首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
制革废水的铁炭微电解深度处理工艺   总被引:1,自引:0,他引:1  
采用铁炭微电解深度处理工艺处理以制革废水为主要成分的园区污水厂二级生化处理出水,通过正交试验及单因素优化试验确定了主要影响因素和最优微电解条件。结果表明:铁炭微电解的影响因素从大到小依次为铁炭比>反应时间>pH值。生化出水平均CODCr=116 mg/L时,在反应时间1.5 h、pH=5的最佳运行条件下,自制铁炭材料(Fe/C=3/1)和所购铁炭颗粒商品成品的微电解出水平均CODCr分别为45 mg/L和50 mg/L,出水CODCr满足《城镇污水处理厂污染物排放标准》(GB 18918—2002)中的一级B排放标准(60 mg/L),自制铁炭材料的微电解运行成本约为0.28元/t。  相似文献   

2.
铁炭微电解法预处理拉米夫定制药废水的研究   总被引:2,自引:0,他引:2  
试验采用铁炭微电解法预处理高浓度拉米夫定制药废水,通过改变进水pH值、铁炭体积比和反应时间等条件考查其对CODCr和色度指标的去除情况。最佳工况参数如下:进水pH值为3,铁炭体积比为2∶1,反应时间为2 h,在反应过程中从铁炭底部加以曝气。结果表明,该工艺处理CODCr和BOD5的质量浓度分别为13 600和1 950 mg/L、色度为3 000倍的废水,其CODCr和色度的去除率分别达到56%和90%,m(BOD5)/m(CODCr)由0.14提高到0.45,废水可生化性得到改善。铁炭微电解法处理拉米夫定制药废水具有操作简便、成本低、处理效果好、不产生二次污染等优点,适合作为拉米夫定制药废水的预处理方法。  相似文献   

3.
采用铁炭微电解-Fenton氧化-生物接触氧化组合工艺处理石化废水,考察了不同因素对各单元废水处理效果的影响。结果表明:当铁炭质量比为1.5∶1,pH值为4.0,HRT为120min时,铁炭微电解单元出水CODCr的质量浓度为420mg/L,单级CODCr去除率为67.57%,出水m(BOD5)/m(CODCr)值由0.020.03升高至0.30;当H2O2投加量为3.0mL/L,pH值为3.5,反应时间为60min时,Fenton氧化单元出水CODCr的质量浓度为130mg/L,单级CODCr的去除率为72.17%,出水m(BOD5)/m(CODCr)值由0.30进一步升高至0.58。经过预处理的出水再进行生物接触氧化处理,出水CODCr的质量浓度小于20mg/L。该组合工艺对CODCr的总去除率高达98.76%,表明物化预处理-生化法组合工艺对此类可生化性较差且组成复杂的石化废水具有比较理想的处理效果。  相似文献   

4.
铁炭微电解法预处理富马酸有机废水的研究   总被引:10,自引:3,他引:10  
采用铁炭微电解法预处理富马酸废水,研究了反应时间、pH值、温度、铁与炭的比例对预处理的影响,试验结果表明:当反应时间180min,铁炭比3∶1,反应温度313K时,CODCr去除率35.41%,出水硫脲的质量浓度从603.3mg/L下降到24.81mg/L,BOD5与CODCr的质量比从0.098升高到0.36。  相似文献   

5.
木薯酒精废水经两级厌氧发酵处理后排出的消化液CODCr的质量浓度为1 3001 500 mg/L,NH3-N的质量浓度为4001 500 mg/L,NH3-N的质量浓度为400500 mg/L,m(BOD5)/m(CODCr)值较低,采用铁炭微电解-固定化微生物技术-混凝沉淀-Fenton试剂组合工艺对该废水进行处理。结果表明:在铁炭质量比为2,pH值为2.0,微电解反应时间为9 h,好氧生化反应时间为24 h,混凝沉淀单元pH值为9.0,反应时间为0.5 h,Fenton试剂反应时间为1.0 h,pH值为3.0,H2O2(30%)的投加量为1.8 mL/L,FeSO4.7H2O的投加量为0.91 g/L的最佳工艺条件下,CODCr的去除率可达98.8%,NH3-N的去除率也高达98.1%,出水CODCr的质量浓度为20 mg/L左右,NH3-N的质量浓度在10 mg/L以下,符合GB 8978—1996《污水综合排放标准》中酒精废水一级排放标准的要求。  相似文献   

6.
微电解-接触氧化法处理甲壳素生产废水   总被引:1,自引:0,他引:1  
采用微电解-接触氧化-过滤-吸附工艺处理甲壳素生产废水,结果表明:铁炭微电解对CODCr的去除率达30%,pH由0.7提高到5.5;生化处理的CODCr去除率达80%以上。  相似文献   

7.
王祖佑  陈怡  陈进富  牟滨子 《广东化工》2010,37(10):100-101,113
针对石化企业化工污水难生化处理、污染物含量高等治理难题,以兰州石化高浓度有机化工污水为研究对象,采用铁炭微电解工艺对污水进行了预处理试验研究,结果显示,在进水pH为1.7,铁水比为1∶7,铁碳比为1∶1.5,反应时间为150min时铁碳微电解净水效果最佳,出水CODCr去除率为41.31%。  相似文献   

8.
采用铁炭微电解法对苯胺废水进行预处理,微电解的作用使苯胺废水中的大部分苯胺降解,而且出水中含有足够的Fe2+,从而减少了催化氧化过程中双氧水的消耗量。结果表明:当进水苯胺、CODCr的质量浓度分别为204、448mg/L,色度为500倍时,在最佳工艺条件(微电解工艺的铁炭体积比1∶1、废水pH值为5,停留时间90min;催化氧化工艺条件为双氧水(30%)用量0.3mL/L,pH值调节至5,反应时间60min)下,该方法对苯胺的去除率为95.32%,对CODCr的去除率达到66.96%,色度的去除率为92%。  相似文献   

9.
铁炭微电解-Fenton试剂联合氧化深度处理印染废水的研究   总被引:10,自引:0,他引:10  
采用铁炭微电解-Fenton联合氧化技术对印染废水生化处理的出水进行深度处理,考察了pH值、H2O2投加量、铁炭体积比、反应时间对处理效果的影响。结果表明,最佳反应条件为:pH2~3,H2O2用量3.2 mL/L,铁炭体积比为1∶1,反应时间为90 min,COD的去除率达到90%以上,色度去除率为99%,盐度去除率为64%,各项指标均达到了印染废水的回用要求。  相似文献   

10.
铁炭微电解-Fenton试剂预处理纤维素发酵废水   总被引:7,自引:0,他引:7  
采用铁炭微电解-Fenton试剂对高化学需氧量、高色度及高盐度的纤维素发酵废水进行了预处理研究。研究表明,铁炭微电解的最佳工艺条件为pH值为4~5,铁屑用量150 g/L,铁炭质量比为1∶2,反应时间1 h,曝气量30 mL/min;Fenton反应最佳条件为:pH值为5,H2O2投加量为4.5 mL/L,反应时间60 min,在此反应条件下,废水COD总去除率接近40%,色度去除率达81%,有效地去除了废水中影响乙醇发酵的4种抑制剂,改善了后续生化处理条件,提高了废水的可生化性。  相似文献   

11.
倪晓晓 《广州化工》2012,(3):104-106,116
实验探讨了O3/H2O2高级氧化法预处理某制药酒精废水过程中H2O2投加量、pH值、反应时间、臭氧发生器氧气流量等因素对CODCr去除率的影响。实验得出的最佳反应条件是:H2O2投加量98 mmol/L,pH值11,氧气流量60 L/h,反应时间90 min,在最佳条件下反应后废水CODCr去除率46.3%,TOC去除率50.5%,B/C从0.08提高到0.32,废水可生化性明显提高,能够满足后续生化处理的需要。  相似文献   

12.
Fenton试剂预处理亚麻生产废水   总被引:1,自引:0,他引:1  
采用Fenton试剂预处理亚麻生产废水。探讨了pH值、反应时间、H2O2投加量、FeSO4.7H2O投加量对去除CODCr的影响。试验结果表明:在pH值为4.5,反应时间为60 min,H2O2投加量为5 mL/L,FeSO4.7H2O投加量为1 500 mg/L,H2O2的投加为分批次的连续投加方式时,CODCr去除率为45%,m(BOD5)/m(CODCr)由0.21提高到0.53,出水中检测不到SS的存在,为后续生化处理创造了有利条件。  相似文献   

13.
采用高压脉冲电凝-Fenton氧化工艺对制药废水进行处理,探讨了进水pH值、极板间距、反应时间、H2O2投加量等因素对去除制药废水CODCr的影响.研究表明:高压脉冲电凝-Fenton氧化法的最佳工况条件为:进水pH值为4左右、极板间距为20 mm、电流强度为10A、高压脉冲电凝反应时间为45 min、H2O2投加量为...  相似文献   

14.
采用超声强化Fenton(Fe2++H2O2)试剂,耦合氧化深度处理山梨酸废水。考察了超声功率、反应时间、反应温度、pH值、试剂投加量对CODCr去除率的影响。结果表明:在超声频率40kHz,超声功率400W,反应时间40min、反应温度60℃、pH值3.0、H2O2浓度0.22mol/L、Fe2+浓度0.04mol/L时,CODCr去除率达到95%以上。与单独使用Fenton试剂法相比,该方法反应时间短、反应温度低、试剂投加量小、CODCr去除率高。  相似文献   

15.
以多孔活性炭结构的多元合金材料为填料,采用微电解催化还原氧化深度处理石化废水。考察了静态试验条件下多元合金填料的类型、填料投加量、废水初始pH值、反应时间、H_2O_2投加量对反应效果的影响。筛选出最佳的微电解一体化填料为Yonker-IME-L02及其最佳投加量为100 g/L,在pH值为2.1,反应时间为90 min的条件下,CODCr的质量浓度从初始的492.5 mg/L降到311.9 mg/L,去除率为36.67%。在以上条件下,同时投加0.50 g/L的H_2O_2强化反应后,CODCr的质量浓度可以降到99.57 mg/L,去除率提升至79.78%。处理出水CODCr浓度达到GB 8978—1996《污水综合排放标准》中的一级标准的要求。  相似文献   

16.
以Cu(NO_3)_2·3H_2O、Fe(NO_3)_3·9H_2O为原料,采用共沉淀法制备了尖晶石型CuFe_2O_4催化剂,并利用XRD、FT-IR、SEM和PPMS对CuFe_2O_4催化剂的晶体结构、微观形貌和磁性强度进行了表征。采用CuFe_2O_4/PMS体系氧化降解油田钻井废水,探索了反应温度、初始pH值、反应时间、催化剂用量以及氧化剂用量等因素对CODCr去除效果的影响。结果表明,催化剂CuFe_2O_4为尖晶石结构,晶体结晶度较好,形貌多数呈正方体,具有顺磁性,易于回收;在CuFe_2O_4投加量为2.0 g/L、氧化剂PMS投加量为18 g/L、30℃、pH值为7时反应3 h,CuFe_2O_4对过硫酸氢钾的活化效果最好,钻井废水的CODCr去除在率达72.19%,m(BOD5)/m(CODCr)值从0.028 3增至0.158 8。催化剂稳定性好,循环使用5次,CODCr去除率仍保持在66%以上。  相似文献   

17.
采用混凝沉淀-Fenton氧化处理垃圾渗滤液生化处理出水,通过单因素试验研究了混凝沉淀和Fenton氧化中各因素对去除CODCr的影响,试验结果表明,最佳混凝试验工艺条件为:复合混凝剂比例n(无机组分)∶n(有机组分)为4.0∶1、p H值为8.5、混凝剂投加量0.6 g/L,CODCr的去除率可达到88.6%。Fenton氧化阶段,当体系p H值为4.0、H2O2投加量为16 mg/L、Fe SO4·7H2O投加量为6 g/L、反应时间为110 min时,CODCr去除率高达95.9%。  相似文献   

18.
采用絮凝-Fenton氧化工艺预处理灭多威农药生产废水。考察聚合氯化铝(PAC)和FeSO_42种絮凝剂的处理效果,发现FeSO_4的处理效果明显优于PAC。当FeSO_4质量浓度为34.2 g/L,废水pH值为7时,絮凝效果最好,CODCr去除率达35.2%。后续Fenton氧化的最适条件为:H_2O_2与Fe~(2+)物质的量之比为5∶1、30%H_2O_2加入量30 mL/L,pH值3,反应时间120 min。在此条件下CODCr去除率达76.8%。絮凝-Fenton氧化法CODCr总去除率达到85.0%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号