首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we propose a facile method for synthesis of K2SiF6:Mn4+ phosphor and discuss its promising application in warm‐white light emitting diodes (LED). The K2SiF6:Mn4+ was synthesized from SiO2 powders through redox reaction in HF/KMnO4 solution. The optical properties of LEDs containing different ratios of K2SiF6:Mn4+ phosphor and commercial Ce3+‐doped garnets (YAG‐40) yellow–green phosphor were studied. A warm‐white LED, with color temperature of 3510 K and color rendering index of 90.9 and efficacy of 81.56 lm/W was demonstrated.  相似文献   

2.
《Ceramics International》2023,49(16):27024-27029
Mn4+-activated fluoride is one of the most important red phosphors for white light-emitting diodes (WLEDs) with high color rendering index (CRI). Due to a lack of water resistance, their potential applications are limited. Although surface coating strategies improve the waterproof stability of fluoride red phosphors, they have downsides. It was found that Nb5+ plays an important role in improving the water resistance of Mn4+-activated oxyfluorides by preventing the hydrolysis of [MnF6]2-. In this work, the influence of Nb5+ on the waterproof stability of Mn4+-activated fluorides was explored. A set of synthesized K2Ta1-xNbxF7:Mn4+ phosphors exhibit tunable and superior water resistance. The photoluminescence (PL) intensity of the representative sample K2Ta0.6Nb0.4F7:5%Mn4+ remains nearly 100% of its initial value even after being immersed in water for 60 min, which is significantly higher than the commercial K2SiF6:Mn4+ red phosphor (8.7%). Our findings open up new possibilities for the development of waterproof fluoride red phosphors.  相似文献   

3.
Phosphors doped with Mn4+ ions have strong emission in the red and far-red light regions and are therefore used as red phosphors for indoor plant cultivation light-emitting diodes (LEDs) and white LEDs (w-LEDs). This paper introduces La2Mg(Mg1/3Ta2/3)O6: Mn4+ (Mg2La3TaO9: Mn4+) red phosphors prepared by conventional high-temperature solid-phase method. The broad excitation band of Mg2La3TaO9: Mn4+ phosphor is effectively excited by ultraviolet and blue light in the range of 250–600 nm, with the emission of 707 nm centered on far-red light. The phosphor has a high color purity of 99.07% and an internal quantum efficiency of 59.87%. To further enhance the performance of the phosphor, a cation substitution method was adopted in this paper to synthesize La2Mg(Al1/2Ta1/2)O6: Mn4+ phosphor by replacing [1/3Mg2+–2/3Ta5+] in La2Mg(Mg1/3Ta2/3)O6: Mn4+ with [1/2Al3+–1/2Ta5+]. The luminescence intensity and thermal stability of the samples were enhanced. The emission spectrum of the Mg2La3TaO9: Mn4+ samples matched well with the phytochrome PFR (phytochrome that absorbs far-red light) and is suitable for the preparation of LEDs for indoor plant cultivation. The concentration quenching effect of the samples was investigated, the main mechanism of which is the electric dipole–dipole interaction. Red LEDs and w-LEDs devices were prepared with the synthesized phosphors that produce light stably at different currents. The w-LEDs have a correlated color temperature of 5310 K and a color rendering index of 80.1. Therefore, these samples are expected to be used as red components for w-LEDs.  相似文献   

4.
The Mn4+ activated fluostannate Na2SnF6 red phosphor was synthesized from starting materials metallic tin shots, NaF, and K2MnF6 in HF solution at room temperature by a two‐step method. The formation mechanism responsible for preparing Na2SnF6:Mn4+ (NSF:Mn) has been investigated. The influences of synthetic parameters: such as concentrations of HF and K2MnF6 in reaction system, reaction time, and temperature on crystallinity, microstructure, and luminescence intensity of NSF:Mn have been investigated based on detailed experimental results. The actual doping concentration of Mn4+ in the NSF:Mn host lattice is less than 0.12 mol%. The most of K2MnF6 is decomposed in HF solution especially in hydrothermal system at elevated temperatures. The color of the as‐prepared NSF:Mn samples changes from orange to white when the temperature is higher than 120°C, which indicates the lower concentration of luminescence centers in the crystals. A series of “warm” white light‐emitting diodes with color rendering index (CRI) higher than 88 and correlated color temperatures between 3146 and 5172 K were obtained by encapsulating the as‐prepared red phosphors NSF:Mn with yellow one Y3Al5O12:Ce3+ (YAG:Ce) on 450 nm blue InGaN chips. The advantage of the synthetic strategy to obtain NSF:Mn can be extended to developing Mn4+‐doped red phosphors from low‐costing metals at room temperature for large‐scale industrial applications.  相似文献   

5.
《Ceramics International》2020,46(7):8811-8818
K2SiF6:Mn4+ phosphor is well known for its excellent red emission performance which is vital for improving the color rendering of white light-emitting diodes. However, the poor moisture resistance limits its application in optical devices. In this paper, K2SiF6:Mn4+ phosphor is coated with an inorganic hydrophobic protective layer to obtain good moisture resistance. Chemical vapor deposition method was used to decompose acetylene at high temperature, and the generated nanoscale carbon layer worked as a hydrophobic protective coating on the surface of the phosphor. Microstructure, compositions and properties of the synthesized K2SiF6:Mn4+@C phosphor were investigated in detail. It is found that most of the deposited carbon is coated on the surface of phosphor crystals in amorphous state. The carbon atoms are bonded with the fluorine element in K2SiF6:Mn4+ phosphor, forming carbon-fluorine (C–F) covalent bonds. The moisture resistance of K2SiF6:Mn4+@C phosphor is improved owing to the protection of the hydrophobic carbon. The relative emission intensity of K2SiF6:Mn4+@C phosphor could maintain 73% of the initial luminous intensity after immersing in the aqueous solution at room temperature for 8 h, whereas K2SiF6:Mn4+ phosphor without carbon coating was only 0.7% remaining of the initial value under the same conditions.  相似文献   

6.
《Ceramics International》2022,48(24):36140-36148
Non-rare earth Mn4+ ion-doped red oxide phosphors have great potential for applications in warm white light-emitting diodes (wLEDs) due to their low cost and stable physicochemical properties. Herein, a series of Ba2LaTaO6 (BLTO): Mn4+ phosphors were successfully synthesized by the high-temperature solid-state method. The theoretical values of the band gap calculated by the density functional theory are close to the experimental values obtained by the absorption spectroscopy. In addition, the phosphors have a broad excitation band in the wavelength range of 280–550 nm and emit red light at the peak wavelength of 681 nm under excitation. The concentration quenching of the BLTO: Mn4+ phosphor was caused by dipole-dipole interactions. The activation energy and the average decay lifetimes of the samples were calculated. Meanwhile, the effects of synthesis temperature and Li+ ion doping on the luminescence performance of the samples were also investigated. Satisfactorily, the color purity and internal quantum efficiency of the phosphor reached 98.3% and 26.8%, respectively. Further, the samples were prepared as red-light components for warm wLEDs. The correlated color temperature, color rendering index, and luminous efficiency of the representative devices driven by 60 mA current were 5190 K, 83.3, and 81.59 lm/W, respectively. This work shows that the BLTO: Mn4+ red phosphor with excellent luminescence performance can be well applied to warm wLEDs.  相似文献   

7.
《Ceramics International》2021,47(23):33152-33161
The Mn4+-doped Ca2MgTeO6 (CMTO) far-red emitting phosphors with double perovskite-type structure were successfully synthesized. Upon near-ultraviolet (n-UV, 300 nm) light excitation, the as-prepared phosphors showed far-red light at 700 nm attributed to the 2Eg4A2g transition of Mn4+ ion. The doping concentration of the CMTO:xMn4+ samples was optimized to be 0.8 mol%. The relevant mechanism of concentration quenching was demonstrated as the dipole-dipole interaction. Furthermore, solid solution and impurity doping strategies were adopted to improve the far-red emission of the luminescence-ignorable CMTO:Mn4+ phosphor. Series of Ca2MgTe(1−y)WyO6:0.8 mol%Mn4+ (y = 0–100 mol%) solid solution and Ca2−zLnzMgTe0.6W0.4O6:Mn4+ (Ln = La, Y, and Gd, z = 10 mol%) phosphors were synthesized through the above two strategies. The luminescence intensity of the optimal Ca1.9Gd0.1MgTe0.6W0.4O6:Mn4+ phosphor was 13.7 times that of the CMTO:Mn4+ phosphor and 2.51 times that of red commercial phosphor K2SiF6:Mn4+. Notably, both CMTO:Mn4+ and Ca1.9Gd0.1MgTe0.6W0.4O6:Mn4+ phosphors exhibited remarkable thermal stability compared with most Mn4+-doped phosphors. Finally, the highly efficient Ca1.9Gd0.1MgTe0.6W0.4O6:Mn4+ phosphor was successfully applied in fabricating the warm white light diode (w-LED). This working along both lines strategy exhibited great potential for luminescence optimization of Mn4+-doped oxide phosphors.  相似文献   

8.
A low sintering temperature glass based on the SiO2–P2O5–ZnO–B2O3–R2O (R=K and Na) system was studied as a matrix for embedding phosphors to fabricate color tunable white LEDs. The proposed system, which uses no heavy‐metal elements and can be sintered at 500°C, incorporates thermally weak commercial phosphors such as CaAlSiN3:Eu2+ to produce phosphor‐in‐glasses (PiGs). Changing the mixing ratio of glass to phosphors affected the photo‐luminescence spectra and color coordinates of the PiGs when mounted on a blue LED. The color rendering index (CRI) and color correlated temperature (CCT) of the LEDs were also varied with the mixing ratio, providing color tunable white LEDs. A high CRI, up to 93, as well as highly improved thermal stability were obtained, along with a low sintering temperature compared to other glass systems, suggesting the practical feasibility of the proposed system.  相似文献   

9.
《Ceramics International》2019,45(15):18876-18886
Red-emitting Sr0.8Ca0.19AlSiN3:0.01Eu2+ phosphor with halide fluxes for use in the production of white light-emitting diodes (white LEDs) with high-colour rendering indices (CRIs) was prepared through the high-temperature solid-state method. Fluoride (NaF, SrF2, BaF2, CaF2, AlF3·3H2O and CeF3), chloride (NH4Cl, BaCl2, MgCl2, NaCl and LiCl) and composite fluxes (NaF + SrF2, SrF2+NH4Cl and NaF + NH4Cl) were applied in the phosphors. NaF, SrF2, NH4Cl and NaF + SrF2 fluxes had prominent effects on the characteristics of Sr0.8Ca0.19AlSiN3:0.01Eu2+ phosphors. Sr0.8Ca0.19AlSiN3:0.01Eu2+ phosphors with various powder morphologies can be obtained through the addition of fluxes, which are conducive for phosphor formation. The powder morphologies of phosphors incorporated with NaF + SrF2 were preferable to those of powders incorporated with other fluxes. This result indicated that the incorporation of NaF + SrF2 into Sr0.8Ca0.19AlSiN3:0.01Eu2+ yielded phosphors with high luminescent intensity and quantum efficiency, excellent thermal stability, narrow full widths at half-maximum (FWHM, 75.2 nm), uniform rod-like morphologies with large particle sizes (D50 = 16.99 μm) and good particle dispersion. White LEDs with high CRIs were obtained by combining prepared phosphors (NaF + SrF2 additive) with the commercial green-emitting phosphors Y3(Al,Ga)5O12:Ce3+ and (Sr,Ba)2SiO4:Eu2+. White LEDs with Y3(Al,Ga)5O12:Ce3+ and (Sr,Ba)2SiO4:Eu2+ phosphors had correlated colour temperatures (CCTs) of 3064 and 3023 K, respectively, and CRIs of 81.8 and 92.4, respectively. Therefore, NaF + SrF2 can be used as a favourable flux for the production of Sr0.8Ca0.19AlSiN3:0.01Eu2+.  相似文献   

10.
Rare earth ions’ site occupation is significant for studying luminescence properties by changing the host composition. The (Ba1-xSrx)9Lu2Si6O24:Eu2+ (x = 0-0.4) tunable-color phosphors were synthesized via a high temperature solid-state reaction. With the Sr2+ ions concentration increase, the luminescent color could be tuned from blue to green. This phenomenon is discussed in detail through the ions occupation in the host lattice. More importantly, the temperature-dependent luminescence of (Ba1-xSrx)9Lu2Si6O24:Eu2+ phosphors was investigated and exhibited excellent thermal stability. Furthermore, white LED device has been fabricated using (Ba1-xSrx)9Lu2Si6O24:Eu2+ phosphor mixed with commercial red phosphor Sr2Si5N8:Eu3+ combined with a 370 nm UV-chip. This device showed correlated color temperature (CCT) of 5125 K and high color render index (CRI) of 91. This phosphor will be a promising candidate as a tunable-color phosphor for UV-based white LEDs.  相似文献   

11.
Deep-red light emitting phosphors are widely used in LEDs for indoor plant growth because of the critical role played by red light in plant growth. The luminescence properties of deep-red phosphors are still not well understood at present. An energy transfer strategy is a common and effective method to improve luminescence properties. In principle, the energy transfer process may occur when the sensitizer's emission spectra overlap with the activator's excitation spectra. In this work, Bi3+ and Mn4+ were incorporated into the matrix of Gd2MgTiO6 as sensitisers and activators, respectively. Mn4+ ions tend to occupy the [TiO6] octahedral site and the Bi3+ ions are expected to substituted in the site of Gd3+. The energy transfer process from Bi3+ to Mn4+ was realised and the photoluminescence (PL) intensity of Mn4+ increased with the doping content of Bi3+. Upon excitation at 375 nm, the PL intensity of Mn4+ increased to 116.4% when the doping concentration of Bi3+ reached 0.3%. Finally, the pc-LED devices were prepared by a Gd2MgTiO6:Bi3+, Mn4+ phosphor. The high red luminescence indicated that this phosphor has potential applications in indoor LED lighting.  相似文献   

12.
Red phosphor is indispensable to achieve warm white light in the white light diode (WLED) application. However, the current red phosphors suffer from high cost and harsh synthesis conditions. In this study, an oxide-based rare-earth-free red-emitting phosphor Li3Mg2NbO6:Mn4+ (LMN:Mn4+) has been successfully synthesized by a simple solid-state reaction method. The relationship between crystal structure and luminescence was investigated in detail. The site occupancy of the doping Mn4+ ion in the LMN host has been discussed from the point of bond valence sum. How the coordination environment of doping Mn4+ affects the energy level of doping Mn4+ ion has been illustrated via the Tanabe-Sugano energy-level diagram. Moreover, warm white light has been obtained using LMN:Mn4+ as compensator to the YAG:Ce3+.  相似文献   

13.
It has been one of the hot issues to prepare the red-emitting Mn4+-doped fluoride phosphors with highly efficient and waterproofness for warm white-light-emitting diodes (WLEDs) by the green and environmentally friendly method. Herein, we design a novel green molten salt route to synthesize K2SiF6:Mn4+ red powder using molten NH4HF2 salt instead of HF liquor as the reaction medium. The results show that KMnO4 and MnF2 could produce Mn4+ in NH4HF2 molten salt through a reduction reaction, and the resulting Mn4+-doped K2SiF6 exhibited a bright red emission peaked at 632 nm under blue light excitation. The luminescence intensity of the as-obtained product after immersing into water for 24 hours maintain nearly 100% of that before soaking and emission peak shape remains unchanged. The thermal stability of the sample was evaluated by temperature-dependent luminescence spectral intensity during heating and cooling. Furthermore, a warm white-light-emitting diodes (WLEDs) with an excellent color rendering index (Ra = 87.1), lower correlated color temperature (CCT = 3536K), and high luminous efficacy (116.99 lm·W−1) was fabricated based on blue chip and K2SiF6:Mn4+ and commercial yellow phosphor (Y3Al5O12:Ce3+).  相似文献   

14.
《Ceramics International》2022,48(12):17253-17260
Mn4+-doped fluoride phosphors can solve the problem for lack of red emitting component in commercial white light-emitting diodes (WLEDs). However, its application is seriously hindered by its easy hydrolysis. Here, we propose to use sodium sulfite as a passivator to treat K2SiF6:Mn4+. After passivation, a Mn4+-rare K2SiF6 protective layer can be formed in situ on the surface of the phosphor, and lead to improved emission intensity, luminescent thermal stability and moisture resistance. When soaking in water for 6 h, the integrated fluorescent intensity of the passivated sample maintained 90.8% of the initial value, while the intensity of the un-passivated sample sharply decreased to 10.2% of the initial value. Mechanisms to improve the emission, water resistance and thermal stability of the luminescence are proposed and discussed. WLED was assembled with the passivated sample, and good performance of warm white light (CCT = 2963 K, Ra = 90.4) was obtained.  相似文献   

15.
High-efficiency and far-red light phosphors based on Mn4+-doped inorganic luminescence materials are beneficial to plant cultivation. However, Mn4+-doped oxide phosphors have a common problem of low quantum efficiency. Alkali metal ion codoping can effectively improve the luminescence properties of Mn4+-activated oxide phosphors. Herein, a series of Sr2InSbO6:Mn4+, M (SISO:Mn4+, M) (M = Li+, Na+, and K+) far-red-emitting phosphors codoped alkali metal ions were first synthesized. Density functional theory calculation indicated that SISO is a kind of indirect bandgap material with a bandgap of ∼1.60 eV. The SISO:Mn4+ samples showed a far-red light at 698 nm upon 365 nm, which perfectly matched the absorption spectrum of the far-red-phytochrome (Pfr) of plants. The doping concentration of the SISO:Mn4+ samples was optimized to be 0.006 mol. The concentration quenching mechanism was defined as dipole–dipole interaction by combining the Dexter theory and the Inokuti–Hirayama model. Optimizing the sintering temperature and codoped with alkali metal ions (Li+, Na+, and K+) could improve the luminescent intensity of SISO:Mn4+. The optimum sintering temperature was 1300°C. The internal quantum efficiencies of SISO:0.006Mn4+ and SISO:0.006Mn4+, 0.006Li+ phosphors are 22.67% and 60.56%, respectively. SISO:Mn4+, Li+ phosphors-based plant growth light-emitting diodes (LEDs) demonstrate excellent optical stability and long lifetime. Thus, these phosphors are promising candidates for plant cultivation LEDs.  相似文献   

16.
《Ceramics International》2017,43(8):6353-6362
Red phosphors serve an important function as red components of warm white light-emitting diodes (WLEDs). Given their remarkable luminescent properties and low cost, Mn4+-doped phosphors are attracting significant attention. In this study, the novel red phosphor Ba2GdNbO6:Mn4+ was synthesized through high-temperature solid-state reaction. The host Ba2GdNbO6 with a double-perovskite structure was investigated. Scanning electron microscopy and thermogravimetric analysis were performed to evaluate the structure and thermal stability of the phosphor, respectively. PLE and photoluminescence spectra were further used to study the luminescence properties of the phosphor. Moreover, crystal field strength and Racah parameters were calculated to estimate the nephelauxetic effect of Mn4+ on the Ba2GdNbO6 host lattice. Thermal quenching characteristics were also analyzed. The fabricated red-emitting LED revealed its potential application in WLEDs.  相似文献   

17.
Phosphors that exhibit a narrow red emission are particularly interesting due to the advantage of providing a more extensive color gamut and better rendering in LED applications such as displays and solid‐state lighting. Although some Eu2+‐activated nitridosilicates have been discovered in this regard, K2SiF6:Mn4+ phosphors are the only option in actual LED applications thus far. We discovered a novel phosphor, K3SiF7:Mn4+, with P4/mbm symmetry. The luminescent properties of K3SiF7:Mn4+ are almost identical to those of the K2SiF6:Mn4+ phosphor, but its materials identity is distinct due to a completely different crystallographic structure, which leads to reduced decay time. The fast decay is one of the most serious disadvantages of existing K2SiF6:Mn4+ phosphors. The K3SiF7:Mn4+ phosphor was examined in comparison to the K2SiF6:Mn4+ via density functional theory calculation, Rietveld refinement, X‐ray photoelectron spectroscopy, X‐ray absorption near‐edge structure spectroscopy, and time‐resolved photoluminescence.  相似文献   

18.
《Ceramics International》2023,49(7):10273-10279
The photoluminescence behavior of inorganic phosphors is generally influenced by thermal stability, which determines the luminescence efficiency of the corresponding devices. Here, a series of Eu2+, Mn2+ co-doped LiAl5O8 blue-green-emitting phosphors with thermal robust are successfully fabricated. The concentration-dependent emission spectra and the decay curves of the as-obtained LiAl5O8: Eu2+, Mn2+ samples manifest the occurrence of the energy transfer from Eu2+ to Mn2+ ions via dipole-dipole interaction, and the corresponding emitted colors are gradually modulated from blue to green under the excitation of 310 nm. Moreover, the zero-thermal-quenching luminescence is observed when the operation temperature is up to 423 K, which is attributed to the energy release from the trapping centers to emitting centers (Eu2+ and Mn2+) at high temperature. Furthermore, a warm white light-emitting diodes (WLEDs) device with correlated color temperature of 5061 K, a color rendering index of 80.6 and long-term stability is fabricated by combining UV LED chip (λex = 310 nm), as-obtained LiAl5O8: Eu2+, Mn2+ phosphor, commercially available red phosphor and green phosphor. These results prove the potential application of the as-obtained LiAl5O8: Eu2+, Mn2+ phosphor for UV-pumped WLEDs devices.  相似文献   

19.
Mn4+-activated fluoride red-emitting narrow-band phosphors have been successfully used in wide color-gamut white LEDs for liquid crystal display (LCD) backlights. However, highly concentrated and toxic HF is usually used in their synthesis, causing environment and safety issues. In this work, we proposed a HF-free green method, that is, using NH4F/HCl instead of HF, to synthesize a series of A2XF6:Mn4+ (A = K, Na, Rb, Cs; X = Si, Ge, Ti) phosphors. The microstructure, photoluminescence (PL) properties, thermal quenching, and applications of the synthesized phosphors were investigated. Using the proposed approach, the phosphors generally showed a pure phase, a particle size ranging from 5 to 45 μm, and some characteristic sharp emission lines of Mn4+ in the red spectral range. The internal quantum efficiency was varied in a broad range of 69%-94% under the 460 nm excitation, depending on the composition of the fluoride host. Among these compositions, K2XF6:Mn4+ (X = Ge and Ti) phosphors even had a similar external quantum efficiency (>60%) with commercial ones. By combining K2GeF6:Mn4+ (narrow-band red) and β-sialon:Eu2+ (narrow-band green) with a blue LED, a white light-emitting diode (wLED) backlight with a color gamut of 87.7% National Television System Committee Standard, color temperature of 8423 K, and a luminous efficacy of 110.8 lm/W was demonstrated. These results indicate that the synthetic method proposed in this work is universal for preparing highly efficient fluoride phosphors used in wLEDs.  相似文献   

20.
《Ceramics International》2020,46(12):20173-20182
Currently, phosphor-converted LEDs (pc-LEDs) are revolutionizing the industry of plant growth lighting. To meet the requirements of this technology, phosphors with tunable photoluminescence, high thermal stability and luminous intensity are required. Herein, we found that the simple substitution of yttrium for lanthanum in La2MgTiO6:Mn4+ (LMT:Mn4+) system could satisfy above three criteria simultaneously. The photoluminescence properties can be regulated by continuously controlling the chemical composition of La2-xYxMgTiO6:Mn4+ solid solution. The La sites are occupied by Y ions, causing a significant blue shift in the emission spectra which owing to the change of local crystal field strengthen. Meanwhile, the thermal stability and decay lifetimes are also varied due to the variation of local structure and band gap energy. The thermal stability of the material reaches 83.5% at 150 °C, which is better than the reported La2MgTiO6:Mn4+ and Y2MgTiO6:Mn4+ phosphors. The electronic luminescence (EL) of pc-LED devices using La2-xYxMgTiO6:Mn4+ red phosphor is evaluated, which matching the absorption regions of plant pigments well, reflecting the superiority of the studied phosphors in plant growth lighting areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号