首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Nanocrystalline nickel and copper-substituted zinc aluminate spinel powders (NixZn1−xAl2O4 and CuxZn1−xAl2O4) with different additional ion concentrations (0 ≤ x ≤ 1) were successfully synthesized by the sol-gel auto combustion method using diethanolamine (DEA) as a fuel. The structures, chemical bonds, morphologies, composition, surface area, and optical properties including the magnetic behavior of the obtained samples were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), the Brunauer-Emmett-Teller (BET) method, UV-visible diffuse reflectance spectroscopy (UV-DRS), and vibrating sample magnetometer (VSM). All characterization results confirmed that a single-phase spinel structure was obtained for all calcined aluminate powders with various crystallite sizes and lattice constants. The band gap energy (Eg) of all modified aluminates is in the range of 2.99-3.15 eV, which was found to be much lower than that of the pure sample (5.60 eV). These results indicate that the Ni2+ and Cu2+-substituted ZnAl2O4 samples could be effectively photoexcited by both the ultraviolet and visible light. Evaluation of the samples to determine the photocatalytic activity was carried out through investigation of the way the four main pollutant types decompose when irradiated by sunlight. These pollutants were rhodamine B (RhB), methylene blue (MB), methyl orange (MO), and methyl red (MR). For all optimum samples of organic dyes, the efficiency of photocatalytic degradation achieved 96% by the end of 150 min. Furthermore, each of the modified photocatalysts could be reused and showed a high degree of stability. According to magnetic measurements, the S-shaped curve of ferrimagnetism can arise in those samples with the optimum concentration, although pure ZnAl2O4 exhibits diamagnetic properties. In comparison to pure ZnAl2O4, the modified samples exhibit high enhancement in the remanent magnetization (Mr), which indicates that it is easy to recover those magnetic photocatalyst through the use of an external magnetic field application. These findings therefore serve as a strong indication that ZnAl2O4 powders substituted by both Ni2+ and Cu2+ may offer the capability to serve in environmentally beneficial harvesting of solar energy.  相似文献   

2.
Magnetic interactions in sol–gel-derived bioactive magnetic glass–ceramics (MGCs) with compositions of (45 − x)SiO2·24.5CaO·24.5Na2O·6P2O5 xFe2O3 (2 ≤ x ≥ 15 wt.%) have been investigated using electron paramagnetic resonance (EPR), and temperature-dependent magnetic susceptibility and magnetization (M–T) techniques. EPR spectra of the MGC samples revealed strong composition dependence in the intensity and linewidth of resonance absorptions at g ≈ 2.0 and g ≈ 4.3. EPR linewidth analysis showed the dominance of dipole–dipole interaction in MGC samples with iron oxide content ≤4 wt.% and a crossover to super-exchange type interaction in samples with higher iron oxide content. Composition-dependent magnetic interaction in these MGC could be related to Fe2+ and Fe3+ ion concentrations using high-temperature magnetic susceptibility studies. Zero-field cooled and field cooled MT curves indicate different magnetic behavior for MGC samples with x ≤ 6 and x ≥ 8 wt.% iron oxide. Although the former show weak magnetic behavior, the latter exhibit superparamagnetic behavior which could be correlated with the percentage of magnetic phases present in each sample. These studies reveal composition-dependent variation in dipolar and super-exchange type interaction in the samples which could help in assessing these MGC for biomedical applications.  相似文献   

3.
ZnAl2O4 powder was synthesised by reacting equimolar ZnO and Al2O3 powders in alkaline chlorides (LiCl, NaCl or KCl). Formation of ZnAl2O4 started at about 700 °C in LiCl and 800 °C in NaCl and KCl. With increasing temperature, the amounts of ZnAl2O4 in the resultant powders increased with a concomitant decrease of ZnO and Al2O3. ZnAl2O4 powder was obtained by water-washing the samples heated for 3 h at 1000 °C (LiCl) or 1050 °C (NaCl and KCl). ZnAl2O4 formed in situ on Al2O3 grains from the surface inwards. The synthesised ZnAl2O4 grains retained the size and morphology of the original Al2O3 powders, indicating that a template formation mechanism dominated formation of ZnAl2O4 by molten salt synthesis.  相似文献   

4.
《Ceramics International》2017,43(17):14756-14762
Magnetite (Fe3O4) powders were synthesized by solution combustion method at different fuel to oxidant ratios (ϕ = 0.5, 0.75, 1 and 1.5) using conventional and microwave ignition. The ignition method and fuel content affected the phase evolution, microstructure and magnetic properties of Fe3O4 powders as characterized by X-ray diffractometry, infrared spectroscopy, N2 adsorption–desorption, electron microscopy and vibrating sample magnetometry techniques. Single phase Fe3O4 powders were only obtained using conventional ignition at ϕ value of 1, while the impurity phases such as α-Fe2O3 and FeO together with Fe3O4 phase were formed by microwave ignition. The bulky microstructure of conventionally combusted powders with specific surface area of 71.5 m2/g was transformed to disintegrated structure (76.5 m2/g) by microwave heating. The microwave combusted powders showed the highest saturation magnetization of 86.5 emu/g at ϕ value of 0.5 and the lower coercivity than that of conventionally combusted powders at all ϕ values, due to their larger particles.  相似文献   

5.
ZnAl2O4 doped with Ti4+ (2%) was synthesized by the hydrothermal method at 220°C at pressure of 25 bars. An average grain size of the as‐prepared sample was 3 nm, the samples with biggest grain size were obtained after annealing at 300°C, 500°C, 600°C, 700°C, and 900°C, diameter of the latter was about 33 nm. IR spectroscopy indicated that ZnAl2O4 was partially inverted. The degree of the inversion decreases with increase in the annealing temperature but increases with increasing Ti4+ content. Absorption and emission spectra as well as emission decay profiles were recorded at 300 and 77 K. The observed spectra are due to charge‐transfer O2??Ti4+ transitions. Color of the emission depends on the nanocrystal size and with increase in its diameter changes from violet to blue, accordingly the absorption bands exhibit redshift. The calculations based on Density Functional Theory confirmed the experimental results. 3d electrons of titanium ions form the bottom of the ZnAl2O4:Ti4+ conduction band, oxygen, aluminum or zinc vacancies create additional levels in the gahnite energy band gap. It was also found that in ZnAl2O4 aluminum or zinc vacancy induces magnetism with relatively high magnetic moment close to 1 μB per vacancy.  相似文献   

6.
A series of FeCo2O4 powders was initially synthesized using a hydrothermal method and subsequently calcined at various temperatures to produce the final product. Pure phase FeCo2O4 powders can only be formed in the temperature range of 950–1050 °C. In this work, we study the cation occupation, cation valence, bond length and bond angle changes of the pure phase FeCo2O4 powders formed in such a narrow temperature range. Octahedral lattice distortion in the pure phase FeCo2O4 samples has been observed. More tetrahedral Fe3+ and octahedral Co2+ are excited and exchanged their sites as the calcination temperature increases from 950 °C to 1000 °C, and part of Co3+ ions are reduced to Co2+ in the sample calcined at 1050 °C. The structure of the sample calcined at 1000 °C is close to that of the ideal FeCo2O4 spinel. Magnetic measurements show that ferrimagnetism and anti-ferromagnetism coexist in the pure phase FeCo2O4 samples. Interaction changes between ferrimagnetism and antiferromagnetism caused by the structural changes of the samples have been studied. Due to the pinning of the local anti-ferromagnetism to ferrimagnetism in the sample, the sample shows a Barkhausen jump below 150 K. As the measurement temperature increases further, the system enters into a reentrant spin glass state.  相似文献   

7.
We report the mechanism involved in sol-gel auto-combustion synthesis of Ba–Sr-hexaferrite (Ba1-xSrxFe12O19; x = 0, 0.25, 0.5, 0.75 and 1, BSFO) ceramic powders through the analysis of the phases evolved during annealing of the as-synthesized powders, along with their structure and morphological studies. The XRD patterns of the as-synthesized samples indicate the formation of barium/strontium monoferrite ((Ba/Sr)Fe2O4) and maghemite (γ-Fe2O3) phases along with a minute amount of hematite (α-Fe2O3) phase. Annealing of these samples facilitates formation of BSFO phase through the solid state reaction between BaFe2O4 and γ-Fe2O3 phase. Interestingly, after annealing the samples with x = 0, 0.5 and 1, at 1000 °C for 2 h, we observed that phase pure Ba–Sr hexaferrite structure forms, but for samples with x = 0.25 and 0.75, high amount of hematite (α-Fe2O3) phase is observed, especially for x = 0.75. The reason associated with this could be the large difference between the ionic radii of Ba2+ and Sr2+ ions occupying the oxygen site. Furthermore, our study on annealing dependent phase evolution confirms that, this difference in ionic radii forbids the formation of a single phase Ba–Sr hexaferrite. The growth of clear hexagonal-shaped plate-like particles with varied particle sizes was observed for all the samples. The particle size variation may be due to the influence of the ionic radii difference on the sinterability of the samples. Our study provides a better understanding of synthesis mechanism of Ba–Sr hexaferrite samples.  相似文献   

8.
《Ceramics International》2023,49(3):4281-4289
Electrochemical energy storage and water splitting strategies may be greatly improved with proper structural design and doping techniques. In the present study, molybdenum-doped ZnAl2O4 loaded on carbon fiber (Mo–ZnAl2O4/CF) was fabricated via a simple hydrothermal synthetic approach. Due to its unique hierarchical nanostructures and enhanced electrical, structural topologies, Mo-doped ZnAl2O4 demonstrates exceptional supercapacitor performance and electrocatalytic oxygen evolution reaction activity. The Mo-doped ZnAl2O4 electrode material exhibited 1477.63 F g?1 specific capacitance, 46.57 Wh Kg?1 specific energy and specific power of 476.4 W kg?1 at 1 A g?1. After 5000 cycles, the pseudo supercapacitor retains 97.46% of its capacitance and displays stable behavior over 50 h. During the OER reaction, the Mo–ZnAl2O4/CF as an electrocatalyst rapidly self-reconstructs, resulting in many oxygen vacancies, and causes a lower 38 mV dec?1 Tafel slope and overpotential potential of 255 mV to achieved 10 mA cm?2 current flow and responsible for the excellent stability of the electrocatalyst. These findings suggest that multifunctional materials based electrode for electrical energy conversion and storage become more efficient and stable by using Mo for doping to generate porous hierarchical structures and local amorphous phases.  相似文献   

9.
Bismuth ferrite nano‐ and microcrystals were prepared by a facile molten salt technique in two kinds of molten‐salt‐based systems (NaCl–KCl and NaCl–Na2SO4). In the NaCl–KCl salt system, a systematic study indicating the effects of process parameters (e.g., calcination temperature, holding time as well as the molten salt ratios) on the bismuth ferrite formation mechanism and structural characteristics is reported. The results show that almost pure phase BiFeO3 powders with minimum impurity phase of Bi2Fe4O9 were synthesized at temperatures of 700°C–800°C, whereas high calcination temperature (e.g., 900°C) resulted in the formation of almost pure phase Bi2Fe4O9 powders. The prolonged holding time increased the particle size via the Ostwald ripening mechanism; however, there was little effect on the particle morphology. Similar phenomenon occurred as increasing the molten salt ratios. In the NaCl–Na2SO4 salt systems, it is found that low NP‐9 (nonylphenyl ether, NP‐9) surfactant content (0–5 mL) led to the formation of almost pure phase BiFeO3 powders, whereas high NP‐9 surfactant content (e.g., 20 mL) resulted in pure phase Bi2Fe4O9 powders. The average particle size of the BiFeO3 powders was decreased as increasing the NP‐9 surfactant content, whereas their morphologies did not change significantly. Because of the simplicity and versatility of the approach used, it is expected that this methodology can be generalized to the large‐scale preparation of other important transitional metal oxides with controllable sizes and shapes.  相似文献   

10.
Low-permittivity ZnAl2-x(Zn0.5Ti0.5)xO4 ceramics were synthesized via conventional solid-state reaction method. A pure ZnAl2O4 solid-state solution with an Fd-3m space group was achieved at x ≤ 0.1. Results showed that partial substitution of [Zn0.5Ti0.5]3+ for Al3+ effectively lowered the sintering temperature of the ZnAl2O4 ceramics and remarkably increased the quality factor (Q × f) values. Optimum microwave dielectric properties (εr = 9.1, Q × f = 115,800 GHz and τf = −78 ppm/°C) were obtained in the sample with x = 0.1 sintered at 1400°C in oxygen atmosphere for 10 h. The temperature used for the sample was approximately 250°C lower than the sintering temperature of conventional ZnAl2O4 ceramics.  相似文献   

11.
《Ceramics International》2020,46(14):21958-21977
The fabrication of nanocomposite photocatalytsts with excellent photocatalytic activity is an important step in the improved degradation of organic dyes. A series of nanocomposite photocatalysts was synthesized with g-C3N4 and ZnO loading contents of 10, 20 and 30%. The nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) surface area analysis, X-ray photoelectron spectroscopy (XPS) and diffuse reflectance spectroscopy (DRS). The optical band gaps of g-C3N4, ZnO and ZnAl2O4 were about 2.79, 3.21 and 3.55 eV, respectively. Methylene blue (MB) was degraded over the prepared photocatalysts under UV irradiation. Photocatalytic activity was about 9.1 and 9.6 times higher, respectively, on 20%g-C3N4/ZnAl2O4 and 20%ZnO/ZnAl2O4 nanocomposite photocatalysts than on pure ZnAl2O4 spinel powders. Recycling experiments showed that 20%g-C3N4/ZnAl2O4 and 20%ZnO/ZnAl2O4 nanocomposite photocatalysts exhibited good stability after five cycles of use.  相似文献   

12.
Quaternary Ni1-xCuxFe2-yCeyO4 complex nano-ferrites system with different cerium content ratio and copper substitution degree were synthesized via co-precipitation wet chemical technique. The newly obtained nanoparticles, with general formula Ni1-xCuxFe2-yCeyO4 (where x = 0.0, 0.3, 0.6 and y = 0.00, 0.03, 0.05, 0.08 and 0.10) were heated up to 600 °C to stabilize the specific crystalline spinel structure. The limit of cerium content was quantitively determined to be around 0.08 and up to 0.10. Furthermore, the powders were pelletized in a 13 mm wide pellets and thermally treated at 950 °C. The thermal treatment affected even more the phases segregation process, as CeO2 was identified in the sample with lowest degree of cerium insertion – 0.03. Also, a difference in color and size of pelletized samples was noticed after the 950 °C thermal treatment. The Rietveld refinement, crystal structure confirmation, morphology magnetic and electrical properties of samples have been deeply studied. The cation distribution carried out from Rietveld refinement confirms the occupancy of (Fe3+) on tetrahedral sites and [Ni2+], [Cu2+], [Fe3+] and [Ce2+] on octahedral sites in the crystal lattice. Preliminary information regarding the cation distribution in spinel structures were suggested by FTIR spectral results, precisely in the 650-520 cm?1 region, as a consequence of peak shape and lack of shiftiness of MTd – O bond. Spherical-shaped quaternary nano-ferrites of 17–28 nm were determined from FE-SEM analysis and the samples composition was confirmed by EDX analysis. Hysteresis loops shows modifications in coercivity, magnetization and magnetic remanence with Ni2+ and Cu2+ ions doping in Ni1-xCuxFe2-yCeyO4 complex systems with typical ferrimagnetic behavior. Dielectric measurements were employed in order to determine the electrical permittivity, dielectric losses and conductivity values in a 10 Hz – 1 MHz frequency range.  相似文献   

13.
This work reports on the preparation, structure, photochemical, and magnetic properties of six-layered Aurivillius bismuth ferrititanates, that is, Bi7Ti3Fe3O21, Bi7(Ti2Nb)Fe3O21+δ, and Bi7(Ti2Mg)Fe3O21−δ nanoparticles. The samples were prepared through the modified citrate complexation and precursor film process. The XRD Rietveld refinements were conducted to study the phase formations and crystal structure. The morphological and chemical component characteristics were investigated using SEM, TEM, and EDX analyses. Bi7Ti3Fe3O21, Bi7(Ti2Nb)Fe3O21+δ, and Bi7(Ti2Mg)Fe3O21−δ nanoparticles present an indirect allowed transitions with band energies of 2.04, 2.03, and 2.02 eV, respectively. The hybridized (O2p+Fet2g+Bi6s) formed the valence band (VB) and electronic components of (Ti–3d+Fe–eg) formed the conduction band (CB) of this six-layered Aurivillius bismuth ferrititanate. The three samples showed efficient photocatalytic degradation of Rhodamine B (RhB) dyes with the excitation wavelength λ > 420 nm. The optical absorption, photodegradation, and magnetic abilities were improved through microstructural modification on “B” site via partial substitution of Mg2+ and Nb5+ for Ti4+. The photocatalytic results were discussed based on the layer structure and multivalent Fe ions. Fe3+/2+ in the perovskite slabs (Bi5Fe3Ti3O19)2− could act as the catalytic mediators in the photocatalysis process. As a photocatalyst, Aurivillius Bi7(Ti2Mg)Fe3O21−δ nanoparticle is advantageous due to its photocatalytic and magnetically recoverable abilities.  相似文献   

14.
《Ceramics International》2023,49(12):19851-19860
Commendable efforts have been gingered towards the fight against cancer. Nevertheless, it remains a major public health concern due to its predominant cause of death globally. Given this, we synthesized two different nanoparticles, Sr2+ and Gd3+ doped magnetite for magnetic hyperthermia and drug delivery application. Based on the characterization, the diffractogram shows that only one phase related to magnetite with a crystallite size of 10 nm was formed. TEM images revealed nanoparticles of spherical shapes of approximately 12 nm. There is no difference in magnetic saturation of the as-received synthesized samples (Fe3O4@Sr and Fe3O4@Gd), while the BET-specific surface area of Fe3O4@Gd is 8 m2 g−1 higher than Fe3O4@Sr. The heat generation in alternating magnetic field (the magnetic hyperthermia) of Fe3O4@Sr functionalized with citric acid and loaded with 5- fluorouracil (Fe3O4@Sr@CA@5-flu) is slower than Fe3O4@Gd@CA@5-flu. The specific absorption rate (SAR) of Fe3O4@Gd@CA@5-flu, 112.0 ± 10.4 W g−1 was found to be higher than that of Fe3O4@Sr@CA@5-flu. The thermogram shows that 11% of the drug was successfully loaded on Fe3O4@Gd@CA@5-flu. The release of the antitumor drug by the synthesized nanoparticle drug carriers for ovarian cancer (SKOV-3 cells) therapy showed that more than 50% of the cancer cell’s viability was reduced after 72 h of incubation. The synthesized nanoparticles demonstrated a promising drug carrier for the treatment of SKOV-3 cells.  相似文献   

15.
The formation behavior of spinel‐type LiFeSiO4 crystals in the quenching of melts in the Li2O–Fe2O3–SiO2 system was examined. It was found that high quenching rates of 103 ~ 106 K/min are favorable for the formation of LiFeSiO4 crystals. The rapid quenched samples showed high electrical conductivities of the order of 10?2–10?4 S/cm at room temperature and low activation energy for conduction of 0.1–0.2 eV. Both valences of Fe2+ and Fe3+ were present in the melt‐quenched samples, and rapid‐quenched samples showed ferrimagnetism. It is proposed that the chemical composition of LiFeSiO4 formed in the rapid quenching of melts would be spinel‐type Li1 + xFe3+1 ? xFe2+xSiO4. Because the Li1 + xFe3+1 ? xFe2+xSiO4 crystalline phases are metastable, the rapid quenching technique is necessary for their synthesis. The effects of quenching rate and composition on the formation of spinel‐type LiFeSiO4 and on the electrical conductivity of quenched samples were discussed.  相似文献   

16.
《Ceramics International》2020,46(10):16196-16209
In this study, pure cobalt ferrite (CoFe2O4) nanoparticles and europium doped CoFe2O4 (CoFe2−xEuxO4; x = 0.1, 0.2, 0.3) nanoparticles were synthesized by the precipitation and hydrothermal approach. The impact of replacing trivalent iron (Fe3+) ions by trivalent rare earth europium (RE-Eu3+) ions on the microstructure, optical and magnetic properties of the produced CoFe2O4 nanoparticles was studied. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectra exposed the consistency of a single cubic phase with the evidence of Eu2O3 phases for x ≥ 0.2. FTIR transmittance spectra showed that, the all investigated samples have three characteristic metal-oxygen bond vibrations corresponding to octahedral B-site (υ1 and υ2) and tetrahedral A-site (υ3) around 415 cm−1, 470 cm−1 and 600 cm−1 respectively. XRD and energy dispersive X-ray spectroscopy studies affirmed the integration of RE-Eu3+ ions within CoFe2O4 host lattice and decrease of average crystals size from 13.7 nm to 4.7 nm. Transmission electron microscopy (TEM) analysis showed the crucial role played by RE-Eu3+ added to CoFe2O4 in reducing the particle size below 5 nm in agreement with XRD analysis. High resolution-TEM (HR-TEM) analysis showed that the as-synthesized spinel ferrite, i.e., CoFe2−xEuxO4, nanoparticles are single-crystalline with no visible defects. In addition, the HR-TEM results showed that pure and doped CoFe2O4 have well-resolved lattice fringes and their interplanar spacings matches that obtained by XRD analysis. Magnetic properties investigated by the vibrating sample magnetometer technique illustrated transformation of magnetic state from ferromagnetic to superparamagnetic at 300 K resulting in introducing RE-Eu3+ in CoFe2O4 lattice. At low temperature (~5 K) the magnetic order was ferromagnetic for both pure and doped CoFe2O4 samples. Substitution of Fe3+ ions in CoFe2O4 nanoparticles with RE-Eu3+ ions optimizes the sample nanocrystals size, cation distribution and magnetic properties for many applications.  相似文献   

17.
In this work, the properties of yttria-stabilized zirconia-based ceramics, Y-TZP containing Fe2O3 as coloring agent were evaluated. Nanoparticled powder of 3Y-TZP (ZrO2 - 3 mol.% Y2O3) doped with different amounts of Fe2O3 (0.002–0.136 wt%) were compacted into monolithical or multilayered samples and sintered at 1475 °C - 2 h. The samples were characterized by X-ray diffraction analysis (XRD), relative density, scanning electron microscope (SEM). Hardness and fracture toughness in the color interface were investigated using the Vickers indentation method and the biaxial flexural strength was determined by the piston on 3 balls method (P–3B). Furthermore, optical parameters were measured using spectrophotometry in regard to sample thickness and Fe2O3 content. The results indicated a good adhesion between layers, proven by indentation cracks randomly growing between different regions, because the powders used produced very similar morphological characteristics. The different amounts of Fe2O3 studied in this work did not interfere in densification, phase composition, or microstructure of the sintered ceramics. The fracture toughness and flexural strength did not significantly change due to the addition of Fe2O3, presenting values close to 7 MPa m1/2 and 1120–1150 MPa, respectively, in all studied compositions. On the other hand, increasing Fe2O3 contents lead to an increase in the hardness of the material (1280–1330 H V), and higher contrast ratios (CR) with a consequent loss of translucency. Color variation (ΔE) depended also on the thickness of the material.  相似文献   

18.
The structural, electrical, and chemical properties of Sn‐doped Fe2O3 powders were investigated. Various quantities of Sn‐doped Fe2O3 powders were synthesized using solid‐state reactions. Rietveld analysis for the powders that were doped below 2% revealed a phase‐pure Sn‐doped Fe2O3 structure (i.e., identical to Fe2O3 structure). Alternatively, the analysis for the powders that were doped more than 3% exhibited secondary phase. The unit cell volume and electrical conductivity of the phase‐pure samples increased with an increase in the doping concentration. X‐ray photoelectron spectroscopy measurements showed an increased Fe2+ state with the increase in Sn doping concentration. Therefore, the improved electrical conductivity and unit cell volume with the increase in doping concentration of the phase‐pure powders might be related to the increased Fe2+ state.  相似文献   

19.
Graphene nanosheet–Fe3O4 (GNS–Fe3O4) hybrids were obtained by a one-step solvothermal reduction of iron (III) acetylacetonate [Fe(acac)3] and graphene oxide (GO) simultaneously, which had several advantages: (1) the Fe3O4 nanoparticles were firmly anchored on GNS surface even after mild ultrasonication; (2) the loading amount of Fe3O4 nanoparticles could be effectively controlled by changing the initial feeding weight ratio of Fe(acac)3 to GO; (3) the Fe3O4 nanoparticles were homogeneously distributed on the GNS surface without much aggregation. Composites based on syndiotactic polystyrene (sPS) and GNS–Fe3O4 were prepared by a solution-blending method and the electric and dielectric properties of the resultant GNS–Fe3O4/sPS composites were investigated. The percolation threshold of GNS–Fe3O4 in the sPS matrix was determined to be 9.41 vol.%. Slightly above the percolation threshold with 9.59 vol.% of GNS–Fe3O4, the GNS–Fe3O4/sPS composite showed a high dielectric permittivity of 123 at 1000 Hz, which was 42 times higher than that of pure sPS. The AC electrical conductivity at 1000 Hz increased from 3.6 × 10−10 S/m for pure sPS to 2.82 × 10−4 S/m for GNS–Fe3O4/sPS composite containing 10.69 vol.% of GNS–Fe3O4, showing an obvious insulator-semiconductor transition.  相似文献   

20.
Marine CSEM is a new technique for detection of deep target hydrocarbons. Aluminum EM antenna was developed, and nanostructured NiZn magnetic feeders were used to increase the field strength from EM antenna for deep hydrocarbons. The doping of Ni2+ was aimed at the optimization of initial permeability and magnetic losses. Ni0.5+xZn0.5‐xFe2O4 (x = 0.3) samples sintered at 950°C presented highest initial permeability (106.23) and low magnetic loss (0.0002) as compared to other samples. Due to better magnetic properties, Ni0.5+xZn0.5‐xFe2O4 (x = 0.3) samples were used as magnetic feeders for EM antenna. Magnitude of EM waves from the antenna increased up to 186%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号