首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of Dy3+/Eu3+ single- and co-doped calcium borosilicate luminescent glasses were prepared by the conventional high temperature melt-quenching method. A compact glass structure is obtained by the addition of Dy3+/Eu3+ ions, which is verified by the physical properties of synthetic glasses. As network modifiers, Dy3+/Eu3+ fill in the interspaces of glass network and contribute to the conversion of [BO3] to [BO4]. Dy3+/Eu3+ co-doped calcium borosilicate glasses can emit white light, which consists of blue, yellow, and red light under 387 nm excitation. The emission spectra and decay curves of the white-emitting glasses have proved the existence of energy transfer. The average lifetime of Dy3+ decreases from 0.251 to 0.165 ms with the increasing Eu3+ concentration. Changing rare earth ions concentration, CIE color coordinates of Dy3+/Eu3+ co-doped glass shifts from cyan to white with increasing excitation wavelength. A white-light emission is obtained when the concentration of Dy3+ and Eu3+ equals to 4% and 2%, respectively. Moreover, the Dy3+/Eu3+ co-doped calcium borosilicate glass shows high-thermal stability and it may be applicable for high-quality white LEDs based on high power near ultraviolet (n-UV) LED chip in the future.  相似文献   

2.
《Ceramics International》2016,42(12):13841-13848
A series of Eu3+- or Dy3+-doped and Eu3+/Dy3+ co-doped Y2WO6 in pure phase was synthesized via high-temperature solid-state reaction. X-ray diffraction, diffuse reflection spectra, photoluminescence excitation and emission spectra, the CIE chromaticity coordinates and temperature-dependent emission spectra were exploited to investigate the phosphors. Upon UV excitation at 310 nm, efficient energy transfer from the host Y2WO6 to dopant ions in Eu3+ or Dy3+ single-doped samples was demonstrated and those phosphors were suitable for the UV LED excitation. The intense red emission was observed in Y2WO6: Eu3+, and blue and yellow ones were observed in Y2WO6: Dy3+. Concentration quenching in Y2WO6: Dy3+ phosphors could be attributed to the electric dipole-dipole interaction. In Eu3+/Dy3+ co-doped Y2WO6 phosphors energy transfer process only took place from the host to Eu3+/Dy3+ ions and warm white-light emission can be obtained by adjusting the dopant concentrations. The temperature-dependent luminescence indicated Eu3+/Dy3+ co-doped Y2WO6 was thermally stable. Our overall results suggested that Y2WO6: Ln3+ (Ln3+=Eu3+, Dy3+) as warm white-light emitting host-sensitized phosphor might be potentially applied in WLEDs.  相似文献   

3.
《Ceramics International》2016,42(11):13004-13010
A series of Dy3+ or/and Eu3+ doped Y2Mo4O15 phosphors were successfully synthesized at a low temperature of 600 °C via solid state reaction. The as-prepared phosphors were characterized by X-ray powder diffraction (XRD), scanning electronic microscope (SEM), photoluminescence (PL) excitation, emission spectra and PL decay curves. XRD results demonstrate that Y2Mo4O15: Dy3+, Eu3+ has the monoclinic structure with the space group of p21/C(14). Under the excitation of ultraviolet (UV) or near-UV light, the Dy3+ and Eu3+ ions activated Y2Mo4O15 phosphors exhibit their characteristic emissions in the blue, yellow and red regions. The emitting light color of the Y2Mo4O15: 0.08Dy3+, yEu3+ phosphors can be adjusted by varying the concentration ratio of Dy3+ to Eu3+ ions and a white light is achieved when the doping concentration of Eu3+ is 5%. In addition, the energy transfer from Dy3+ to Eu3+ is also confirmed based on the luminescence spectra and decay curves.  相似文献   

4.
Novel LaMgAl11O19:Tm3+, Dy3+ phosphors were prepared utilizing a high‐temperature solid‐state reaction method. The phase formation, luminescence properties, energy‐transfer mechanism from the Tm3+ to the Dy3+ ions, the thermal stability, and CIE coordinates were investigated. When excited at 359 nm, the LaMgAl11O19: xTm3+ phosphors exhibit strong blue emission bands at 455 nm. After codoping with Dy3+ and excitation at 359 nm, the LaMgAl11O19:0.03Tm3+, yDy3+ phosphors emitted white light consisting of the characteristic emission peaks of Tm3+ and Dy3+. The Dy3+ emission intensity increased with the Dy3+ concentration due to the energy transfer from Tm3+ to Dy3+, and concentration quenching due to the high Dy3+ doping concentration (= 0.1 mol) did not occur. The calculation of the CIE coordinates of the LaMgAl11O19:Tm3+, yDy3+ phosphors revealed the tunability of the emission color from blue to bluish‐white and to white by changing the excitation wavelength and the doping concentration. An energy transfer from Tm3+ to Dy3+ by dipole–dipole interaction was confirmed by the decay curve, lifetime, and energy‐transfer efficiency measurements. When excited at 359 nm, the LaMgAl11O19:Tm3+, Dy3+ phosphor also showed good thermal stability, suggesting that it can be used in white LEDs excited by a GaN‐based ultraviolet LED.  相似文献   

5.
《Ceramics International》2017,43(11):8497-8501
Single-component white-emitting Sr3Y(PO4)3:Dy3+ phosphors were synthesized by a high-energy deformation process. X-ray diffraction patterns showed the resulting crystallized phase to be of cubic structure, space group I-43d (no. 220). The broad-band excitation spectra between 250 and 500 nm were observed by monitoring the emission wavelength at 576 nm, which matches well with commercial near-UV or blue LED chips. Under a 352 nm excitation, the emission peaks were observed at 483 nm (blue), 576 nm (yellow), and 666 nm (red), corresponding to the 4F9/26H15/2, 4F9/26H13/2, and 4F9/26H11/2 transitions of Dy3+ ions. The optimized doping concentration of Dy3+ ion was 8 mol%. By controlling the Dy3+ ion concentration, tunable colors from white to yellow were obtained in Sr3Y(PO4)3:Dy3+ phosphors. These results reveal that studied materials may be a promising candidate for white LED applications.  相似文献   

6.
《Ceramics International》2017,43(15):12044-12056
Perovskite type titanate phosphors Sr0.97−xDy0.03LixTi1−xNbxO3, Sr0.9−xDyxLi0.1Ti0.9Nb0.1O3 and Sr0.87−yDy0.03EuyLi0.1Ti0.9Nb0.1O3 were prepared by conventional solid state method. Herein, white light emission from Sr0.9−xDyxLi0.1Ti0.9Nb0.1O3 phosphors and the lowering of its color temperature through codoping with Eu3+ ions are reported. Raman measurements have shown that the incorporation of dopants alters the vibrational properties of these phosphors significantly, indicating the reduction of the local symmetry in the crystal lattice. The addition of LiNbO3 in SrTiO3:Dy3+ phosphor enhances the luminescence intensity and the yellow to blue ratio resulting in emission of high quality white light with color coordinates corresponding to that of standard white. Life time measurements and data fits of Sr0.9−xDyxLi0.1Ti0.9Nb0.1O3 phosphors revealed the biexponential behaviour of luminescence decay profiles. From Judd-Ofelt analysis it is found that the intensity parameter Ω2 increases with Dy3+ concentration and a quantum efficiency of 90.4% was obtained for optimum concentration. In the case of Dy3+ and Eu3+ codoped phosphors, the color coordinates are found to be sensitive to the Eu3+ concentration and the highest energy transfer efficiency of 92% was obtained for the phosphor doped with 10 mol% Eu3+. The emission color changes from cold white to reddish orange when the wavelength of excitation alters from 452 to 388 nm, since the energy transfer mechanism alone take place under 452 nm excitation and both direct absorption and the energy transfer mechanism occurs under 388 nm excitation.  相似文献   

7.
《Ceramics International》2022,48(24):36706-36714
A single-component Ca3YAl3B4O15 (CYAB):Dy3+, Eu3+ phosphor was synthesized by the traditional high temperature solid-phase method, Dy3+ and Eu3+ were codoped in the structure to obtain a warm white emission. The results of XRD and EDS revealed that all samples had the standard Ca3YAl3B4O15 structure, and no impurity phase appeared with codoping. The emission of Dy3+ in CYAB consisted of both main peaks at 476 nm and 570 nm, with which a white emission could be observed. Furthermore, a characteristic emission peak of Eu3+ appeared at 617 nm in Dy3+/Eu3+-codoped samples to supplement red component for the white emission of Dy3+, due to the energy transfer effect between Dy3+ and Eu3+. With the amount of Eu3+ raised, the correlated colour temperature of CYAB:Dy3+, Eu3+ phosphor obviously decreased, and a warm white light was successfully realized from the manufactured w-LEDs. Therefore, all results indicated that the single-component Dy3+/Eu3+ codoped CYAB white-emitting phosphor had a potential application in ultraviolet excited w-LEDs.  相似文献   

8.
A series of Dy3+–Eu3+‐codoped ZrO2 nanocrystals with tetragonal and cubic symmetry was synthesized via a wet chemical reaction. When the Eu3+‐doping content was fixed, the crystal structure could be stabilized from the mixed phase to single cubic phase by simply adjusting the content of Dy3+. The cubic ZrO2:Dy3+–Eu3+ nanoparticles exhibited spherical and nonagglomerated morphology. The effective phonon energy of cubic ZrO2:5%Dy3+–5%Eu3+ was calculated to be 445 cm?1, which is lower than the previously reported results. Extensive luminescence studies of ZrO2:Dy3+–Eu3+ as a function of Dy3+ content demonstrated that the dopant concentration and its site symmetry play an important role in the emissive properties. Under 352 nm excitation, the increment of Dy3+ concentration in ZrO2:Dy3+–Eu3+ led to an increase in orange (590 nm) and red (610 nm) emissions of Eu3+ ions, which are attributed to the 5D07FJ(J = 1, 2) transitions of Eu3+ ions. This increment is possibly due to the efficient energy transfer (ET) 4F9/2:Dy3+5D0:Eu3+. The phosphors can generates light from yellow through near white and eventually to warm white by properly tuning the concentration of Dy3+ ions through the ET and change in site symmetry. These phosphors may be promising as warm‐white‐/yellow‐emitting phosphors.  相似文献   

9.
《Ceramics International》2023,49(1):345-356
Developing tunable full-color emission photoluminescent materials is always desired in color-on-demand applications and still confronts challenges. Theoretically, full color including white emission can be achieved by the combination of three primary colors (red, green, and blue) based on the additive color theory. Herein, a strategy for the preparation of tunable full-color luminescence is realized by mixing the inorganic rare-earth-doped SrAl2O4: Eu2+, Dy3+ (green emission), Y2O2S: Eu3+, Mg2+, Ti4+, Ti4+0.05 (red emission), and Sr2MgSi2O7: Eu2+, Dy3+ (blue emission) phosphors with different ratios. By adjusting individual phosphors at certain specific ratios, white light (0.332, 0.332) and full-spectra emission are achieved under a single low excitation energy (λex = 365 nm) using a portable ultraviolet (UV) lamp. Based on the facile preparation and effective tunable full-color emission features of the phosphors, a novel encryption way of the luminescent unit as information storage 3 dimensions (3D) codes is developed. The multiplexed encrypting information capacity of the codes is enhanced in a 3D maneuver strategy by simply adjusting the number of light-emitting units with infinite emission colors. The proposed strategy makes the tunable full-color emission phosphors useful in promising applications including full-color display, high-level information encryption and anti-fake.  相似文献   

10.
A series of Ca5(PO4)3F:Dy3+, Eu3+ phosphors was synthesized by a solid‐state reaction method. The XRD results show that all as‐prepared Ca5(PO4)3F:Dy3+, Eu3+ samples match well with the standard Ca5(PO4)3F structure and the doped Dy3+ and Eu3+ ions have no effect on the crystal structure. Under near‐ultraviolet excitation, Dy3+ doped Ca5(PO4)3F phosphor shows blue (486 nm) and yellow (579 nm) emissions, which correspond to 4F9/26H15/2 and 4F9/26H13/2 transitions respectively. Eu3+ co‐doped Ca5(PO4)3F:Dy3+ phosphor shows the additional red emission of Eu3+ at 631 nm, and an improved color rendering index. The chromaticity coordinates of Ca5(PO4)3F:Dy3+, Eu3+ phosphors also indicate the excellent warm white emission characteristics and low correlated color temperature. Overall, these results suggest that the Ca5(PO4)3F:Dy3+, Eu3+ phosphors have potential applications in warm white light‐emitting diodes as single‐component phosphor.  相似文献   

11.
Tunable full color emissive LiSr3.99?xDy0.01(BO3)3:xEu3+ (0≤x≤0.09) phosphors peaked at 481 nm (blue), 574 nm (yellow), 592 nm (orange), and 617 nm (red) were synthesized in air by high temperature solid-state reaction route. The as-synthesized phosphors were characterized by X-ray powder diffraction (XRD), photoluminescence excitation (PLE) and photoluminescence (PL) spectra. The PLE spectra in the range from 200 to 500 nm include an Eu–O charge transfer band (CTB) and several 4f–4f transition peaks of Dy3+ and Eu3+, indicating its potential application in white light emitting diodes (LEDs). The effect of Eu3+ concentration on the emission intensity of LiSr3.99?xDy0.01(BO3)3:xEu3+ phosphors was investigated in detail and the optical concentration is found to be x=0.005. The CIE chromaticity coordinates for LiSr3.99?xDy0.01(BO3)3:xEu3+ phosphors are simulated. With an increase in Eu3+ ion concentration, the chromaticity color coordinates can be tuned efficiently from the border of greenish white region to its equal-energy white light point, and eventually to red region. All the results imply that the studied LiSr3.99?xDy0.01(BO3)3:xEu3+ phosphors could be potentially used as white LEDs.  相似文献   

12.
Using the melt-quench technique, potassium zinc borophosphate (KZnBP) glasses incorporated with Dy3+, Eu3+, and Dy3+/Eu3+ ions individually and combinedly were prepared, and their photoluminescence (PL)-related features were investigated. The KZnBP glass containing an optimized content of Dy3+ (0.5 mol%) is co-doped with Eu3+ in various contents, and the energy transfer (ET) process between them was studied at λexci = 349, 364, 387 (Dy3+), and 394 nm (Eu3+). The Dy3+/Eu3+ co-doped system, when excited with Dy3+ excitations has resulted in a significant decrease in the intensity of Dy3+ peaks observed at 480 nm (4F9/26H15/2, blue) and 574 nm (4F9/26H13/2, yellow), with simultaneous enhancement of the intensity of Eu3+ peaks at 591 nm (5D07F1, orange) and 617 nm (5D07F2, red). This trend is due to the efficient energy transfer from Dy3+ to Eu3+, indicating that Eu3+ ions were sensitized by Dy3+ ions. Dexter's theory and the Inokuti–Hirayama (I–H) model revealed that the dipole–dipole interaction is accountable for the energy transfer from Dy3+ to Eu3+ through energy-transfer channels [4F9/2(Dy3+)+7F1,2(Eu3+)→6H15/2(Dy3+)+5D2(Eu3+)] and [4F9/2(Dy3+)+7F0(Eu3+)→6H13/2(Dy3+)+5D0(Eu3+)]. The color coordinates of the Dy3+/Eu3+ co-doped glasses under various excitations fall within the white light emission spectrum, indicating their potential application in warm white LEDs.  相似文献   

13.
Single-composition Ba2Y2Si4O13:Bi3+,Eu3+ (BYSO:Bi3+,Eu3+) phosphors with color-tunable and white emission were prepared by conventional high temperature solid-state reaction method. The structural and luminescent properties of these phosphors were thoroughly investigated through X-ray diffraction, photoluminescence, and decay curves. BYSO:Bi3+ phosphors show two excitation peaks at 342 and 373 nm, and give two emission peaks at 414 and 503 nm, respectively, indicating that there are two sites of Bi3+ in BYSO. The energy transfer from Bi3+ to Eu3+ was investigated in detail. Varied hues from blue (chromaticity coordinate [0.219, 0.350]) to white (0.288, 0.350) and orange-red light (0.644, 0.341) can be generated by adjusting the content of Eu3+. Pure white light emission (0.311, 0.338) can be obtained under the excitation of 355 nm in BYSO:3%Bi3+,20%Eu3+ phosphor. Besides, BYSO:Bi3+,Eu3+ phosphors exhibit distinct thermal quenching properties, whose emission intensity at 473 K is 82.6% of that at 298 K. Our results indicate that BYSO:Bi3+,Eu3+ may be applied as conversion phosphors for n-UV-based W-LEDs.  相似文献   

14.
Rare-earth phosphors are commonly used in display panels, security printing, and fluorescent lamps, and have potential applications in lasers and bioimaging. In the present study, Eu3+- and Dy3+-codoped uniform-shaped Y2O3 submicron particles were prepared using the urea homogeneous precipitation method. The structure and morphology of the resulting particles were characterized by X-ray diffraction, field emission scanning electron microscope, and field emission transmission electron microscope, whereas their optical properties were monitored by photoluminescence spectroscopy. The room-temperature luminescence color emission of the synthesized particles can be tuned from red to yellow by switching the excitation wavelength from 254 to 350 nm. The luminescence intensities of red and yellow emissions could be altered by varying the dopant concentration. Strong quenching was observed at high Eu3+ and Dy3+ concentrations in the Y2O3 host lattice.  相似文献   

15.
《Ceramics International》2015,41(8):9910-9915
To obtain warm white-light emission, a series of Ca9MgNa(PO4)7:Sr2+, Mn2+, Ln (Ln=Eu2+, Yb3+, Er3+, Ho3+, and Tm3+) phosphors were designed and their photoluminescence properties under near-ultraviolet and near-infrared excitation were studied. For near-ultraviolet excitation, blue-white emission is produced initially in the Eu2+ single-doped Ca9MgNa(PO4)7, whose excitation band can well match with the near ultraviolet LED chip. By introducing Sr2+ ions into Ca9MgNa(PO4)7:Eu2+, the Eu2+ emission band beyond 500 nm is enhanced obviously. Correspondingly, the emitting light color is tuned to nearly white. To generate warm white light further, Mn2+ is doped into the Ca8.055MgNa(PO4)7:0.045Eu2+, 0.9Sr2+ and the correlated color temperature is decreased largely. For near-infrared excitation, the green, red, and blue emissions have been obtained in the Yb3+-Er3+, Yb3+-Er3+, and Yb3+-Er3+ co-doped Ca9MgNa(PO4)7 phosphors, respectively. And warm white light is also produced in the Ca9MgNa(PO4)7:Yb3+, Er3+, Ho3+, Tm3+ under 980 nm excitation.  相似文献   

16.
《Ceramics International》2017,43(11):8406-8410
Color-tunable Dy3+/Eu3+ co-doped in Ce2AlO3N phosphors were synthesized via a simple conventional solid state reaction. The as-prepared samples were characterized by XRD, TEM and photoluminescence spectra. Results show that the concentrations of Eu3+ ions can affect the blue and yellow emission intensities of Dy3+, and tunable emission color can be obtained by adjusting the doping concentrations of Eu3+. Based on the energy levers of Eu3+and Dy3+, the mechanism of tunable color has been presented in detail. The thermal stability of Dy3+/Eu3+: Ce2AlO3N has also been discussed.  相似文献   

17.
《Ceramics International》2015,41(4):5525-5530
A series of single-phase Eu3+, Tb3+, Bi3+ co-doped LaPO4 phosphors were synthesized by solid-state reaction at 800 °C. Crystal structures of the phosphors were investigated by X-ray diffraction (XRD). A monoclinic phase was confirmed. The excitation (PLE) and emission (PL) spectra showed that the phosphors could emit red light centered at 591 nm under the 392 nm excitation, which is in good agreement with the emission wavelength from near-ultraviolet (n-UV) LED chip (370–410 nm). The results of PLE and PL indicated that the co-doped Tb3+ and Bi3+could enhance emission of Eu3+ and the fluorescent intensities of the phosphors excited at 392 nm could reach to a maximum value when the doping molar concentration of Tb3+ and Bi3+ is about 2.0% and 2.0%, respectively. The co-doping Tb3+ and Bi3+ ions can strengthen the absorption of near UV region. They can also be efficient to sensitize the emission of Eu3+, indicating that the energy transfer occurs from Tb3+ and Bi3+ to Eu3+ ions. From further investigation it can be found that co-doping Tb3+ and Bi3+ ions can also induce excitation energy reassignment between 5D07F1 and 5D07F2 in these phosphors, and result in more energy assignment to 5D07F2 emission in LaPO4:Eu3+, Tb3+, Bi3+. Our research results displayed that La0.94PO4:Eu3+0.02, Tb3+0.02, Bi3+0.02 could be a new one and could provide a potential red-emitting phosphor for UV-based white LED.  相似文献   

18.
《Ceramics International》2022,48(13):18793-18802
The luminescence center energy transfer, crystal field strength, and covalency are limited by the crystal structure of the host and subsequently affect the luminescence efficiency, color, and intensity. Here, we report an excellent red phosphor BaLaLiWO6:0.40Eu3+ and the dependence between symmetry and luminous performance. A model for changing symmetry is drawn by analyzing the Coulomb potential and structure for the application of a double-perovskite phosphor BLLWO: Dy3+, Eu3+ in white light LEDs. The addition of Dy3+/Eu3+ makes the W-O bond formed by the B-site and oxygen ion longer and the Li-O bond shorter, and the difference between the eight octahedral around the A-site is reduced, increasing the symmetry of the A-site. Local symmetry was successfully modulated by changing the Eu3+ concentration to control the Y/B ratio of Dy3+ and the R/O ratio of Eu3+ and smoothly achieved (0.382, 0.373) warm white light color coordinate. The phosphor has excellent thermal stability and still has 92.3% intensity at 475 K. The above results show that the wavelength composition of the luminescence is tunable by changing the symmetry of the environment in which the doped ions are located. It applies to single hosts for the regulation of white light emission.  相似文献   

19.
A growing demand for white light-emitting diodes (W-LEDs) gives rise to continuous exploration of functional fluorescence glasses. In this paper, Tm3+/Dy3+ single- and co-doped glasses with composition (in mol%) of 30P2O5–10B2O3–23SrO–37K2O were synthesized using the melt-quenching method in air. The physical properties, glass structure, luminescence characteristics and energy transfer mechanism of the glasses were systematically studied. As glass network modifiers, Tm3+ and Dy3+ ions can densify the glass structure. Excitation wavelength and doping concentration of Tm3+/Dy3+ ions have a direct impact on the emission intensities of blue and orange light as well as the color coordinate of the as-prepared glasses. A white light very close to standard white light can be obtained under 354 nm excitation when the content of Tm3+ and Dy3+ is 0.2 mol% and 1.0 mol%, respectively. The results of the emission spectra and decay curves reveal the existence of energy transfer from Tm3+ to Dy3+. The analytic results based on the Inokuti-Hirayama model indicate that the electrical dipole-dipole interaction may be the main mechanism of energy transfer. Moreover, Tm3+/Dy3+ co-activated glass phosphor has good thermal stability and chrominance stability and it is a promising candidate for white LEDs and display device.  相似文献   

20.
《Ceramics International》2020,46(5):6276-6283
In this study, novel Eu3+-, Dy3+-, and Sm3+-activated Na3La(VO4)2 phosphors were synthesized using a solid state reaction method. X-ray diffraction analysis results indicated that the Na3La(VO4)2 phosphors had an orthorhombic crystal structure with the Pbc21 space group. There were two different La(1)O8 and La(2)O8 polyhedra with high asymmetry in the crystal structure. Scanning electron microscopy revealed that the product had a sheet morphology with an irregular particle size. Further, the luminescence properties, including the excitation and emission spectra, and luminescence decay curve, were investigated using a fluorescence spectrometer. The results showed that the Na3La(VO4)2 compound was an excellent host for activating the luminescence of Eu3+ (614 nm), Dy3+ (575 nm), and Sm3+ (647 nm) ions. Further, Dy3+/Eu3+ co-doped Na3La(VO4)2 phosphors were exploited, and the energy transfer from Dy3+ to Eu3+ was demonstrated in detail by the photoluminescence excitation, photoluminescence spectra, and luminescent decay curves. The results showed that the energy transfer efficiency from Dy3+ to Eu3+ was highly efficient, and the energy transfer mechanism was dipole–dipole interactions. Finally, tunable emissions from the yellow region of CIE (0.3925, 0.4243) to the red region of CIE (0.6345, 0.3354) could be realized by rationally controlling the Dy3+/Eu3+ concentration ratio. These phosphors may be promising materials for the development of solid-state lighting and display systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号