首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The successful fabrication of hydroxyapatite‐bioactive glass scaffolds using honeycomb extrusion is presented herein. Hydroxyapatite was combined with either 10 wt% stoichiometric Bioglass® (BG1), calcium‐excess Bioglass® (BG2) or canasite (CAN). For all composite materials, glass‐induced partial phase transformation of the HA into the mechanically weaker β‐tricalcium phosphate (TCP) occurred but XRD data demonstrated that BG2 exhibited a lower volume fraction of TCP than BG1. Consequently, the maximum compressive strength observed for BG1 and BG2 were 30.3 ± 3.9 and 56.7 ± 6.9 MPa, respectively, for specimens sintered at 1300°C. CAN scaffolds, in contrast, collapsed when handled when sintered below 1300°C, and thus failed. The microstructure illustrated a morphology similar to that of BG1 sintered at 1200°C, and hence a comparable compressive strength (11.4 ± 3.1 MPa). The results highlight the great potential offered by honeycomb extrusion for fabricating high‐strength porous scaffolds. The compressive strengths exceed that of commercial scaffolds, and biological tests revealed an increase in cell viability over 7 days for all hybrid scaffolds. Thus it is expected that the incorporation of 10 wt% bioactive glass will provide the added advantage of enhanced bioactivity in concert with improved mechanical stability.  相似文献   

2.
《Ceramics International》2023,49(10):15734-15740
The addition of titania to zirconia dental implants has been considered a promising choice to improve its bioactivity. This study aimed to evaluate the effect of different sintering conditions on the microstructure, density, optical properties and flexural strength of a 3Y-TZP/TiO2 dental ceramic based on zirconia with two different titania contents (7.5 mol% and 12.5 mol%). 3Y-TZP/TiO2 ceramic powders were synthesized by coprecipitation, uniaxially pressed and sintered at six different sintering conditions. Microstructural analysis of the sintered samples was performed by scanning electron microscopy and X-ray diffraction. Optical properties were measured using a spectrophotometer. The density was determined by Archimedes principle. Flexural strength was estimated by the biaxial flexure device. The microstructure and flexural strength of the 3Y-TZP/TiO2 dental ceramic with 7.5% and 12.5 mol% were affected by the sintering conditions. Sintering the specimens at 1460 °C for 2 h increased the grain size and significantly decreased the flexural strength of 3Y-TZP/TiO2 dental ceramic. The interaction (titania content x sintering conditions) affected the relative density and optical properties. A relative density greater than 98% was achieved for the T7.5 groups (sintered at 1260 °C/1 h, 1300 °C/1 h and 1300 °C/2 h) and for the T12.5 groups (sintered at 1260 °C/1 h, 1260 °C/4 h, 1300 °C/1 h and 1300 °C/2 h). The highest values of L*, a* and b* were respectively 87.2 (T7.5 group sintered at 1460 °C/2hs), 4.3 (T12.5 group sintered at 1300 °C/2hs) and 15.8 (T12.5 group sintered at 1300 °C/1 h). The material developed with 12.5 mol% of titania and sintered at 1300 °C/2 h showed high densification, flexural strength of 670 MPa and has good potential to be used in dentistry.  相似文献   

3.
As an ideal component material for advanced aeroengines, SiC composite faces severe challenges of high temperatures and oxidation. Here, a high-densification SiCf/SiC–YSi2–Si composite was prepared through combining PIP with RMI of Si–13 at% Y alloy to achieve enhanced performance at high temperatures. Based on the analysis of the microstructure and thermophysical properties, it found that the introduction of the highly crystalline Si–Y alloy can improve the high-temperature thermal conductivity of the composite through phonon and electron conduction. In addition, Y migrates to the surface and forms yttrium silicate with increasing oxidation temperature, which facilitates the excellent long-term oxidation resistance of the composite at 1200–1300 °C. Thus, the composite retained its high strength (89.15% and 86.84%) after oxidation at 1200 °C and 1300 °C for 100 h. The experimental results clearly demonstrate that the introduction of the Si–Y alloy is an effective way of preparing high-performance SiC composites.  相似文献   

4.
《Ceramics International》2017,43(4):3647-3653
This study investigated the effect of sintering temperature on the microstructure and mechanical properties of dental zirconia-toughened alumina (ZTA) machinable ceramics. Six groups of gelcast ZTA ceramic samples sintered at temperatures between 1100 °C and 1450 °C were prepared. The microstructure was investigated by mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. The mechanical properties were characterized by flexural strength, fracture toughness, Vickers hardness, and machinability. Overall, with increasing temperature, the relative density, flexural strength, fracture toughness, and Vickers hardness values increased and more tetragonal ZrO2 transformed into monoclinic ZrO2; on the other hand, the porosity and pore size decreased. Significantly lower brittleness indexes were observed in groups sintered below 1300 °C, and the lowest values were observed at 1200 °C. The highest flexural strength and fracture toughness of ceramics reached 348.27 MPa and 5.23 MPa m1/2 when sintered at 1450 °C, respectively. By considering the various properties of gelcast ZTA that varied with the sintering temperature, the optimal temperature for excellent machinability was determined to be approximately 1200–1250 °C, and in this range, a low brittleness index and moderate strength of 0.74–1.19 µm−1/2 and 46.89–120.15 MPa, respectively, were realized.  相似文献   

5.
《Ceramics International》2016,42(11):13256-13261
The oxidation behavior of pressureless liquid phase sintered SiC ceramics with Al2O3 and Y2O3 as sintering additives was investigated in the temperature range from 1000 °C to 1600 °C at the interval of 100 °C for 5 h. The relationship between residual flexural strength and microstructure was analyzed in detail. It was found that the SiC specimens suffered from mild oxidation below 1300 °C. The flexural strength of SiC specimens after oxidation at 1100 °C was the highest (90% of the original strength) due to the formation of dendritic grains, which filled pores and healed cracks. And the flexural strength was almost above 80% of the original flexural strength when the oxidation temperature was below 1300 °C. Meanwhile, the weight of specimens underwent steady increase. However, when the oxidation temperature was elevated to above 1400 °C, the specimens began to suffer from severe oxidation, which resulted in a lot of through pores and cracks on the surface, bringing about the sharp decrease of flexural strength to 30% of original strength when the oxidation temperature of 1600 °C was reached. And the weight of the specimens after huge increase began to show downtrend when the oxidation temperature was elevated to 1600 °C due to the spalling of oxidation products.  相似文献   

6.
The aim of this work was the analysis of the experimental results of a transparent alumina (BMA15) ceramic which was fabricated by Spark Plasma Sintering (SPS) from nanopowder (BMA15, Baikowski Chimie, France), at different temperatures (1200°C, 1250°C, 1300°C). With the application of a maximum uniaxial pressure of 73 MPa during all the fabrication-cycle (more than 3 hours). We sought an optimal sintering temperature combining better optical and mechanical properties of our pellets. The sintered alumina (BMA15) has a crystalline and dense microstructure. The samples sintered at 1200°C exhibit the best optical properties, in particular: good real inline transmission (RIT) and an optical gap greater than those of the samples sintered at 1250°C and 1300°C. Due to their low density, the Young modulus of alumina sintered at 1200 °C, deduced by ultrasound, has a low value which is about 385 GPa. Similarly, its small grain size gives it a better Vickers hardness ~ 21 GPa. Therefore, the value of the coefficient of friction μ stabilizes around the mean value of 0.21.  相似文献   

7.
《Ceramics International》2023,49(16):26719-26725
The effect of MnO2 additives on the sintering behavior and mechanical properties of alumina-toughened zirconia (ATZ, with 10 vol% alumina) composites was investigated by incorporating different amounts of MnO2 (0, 0.5, 1.0, and 1.5 wt%) and sintering at various temperatures ranging from 1300 to 1450 °C. The addition of MnO2 up to 1.0 wt% improved the sintered density, hardness, flexural strength, and fracture toughness of the composite. However, the addition of 1.5 wt% MnO2 degraded the relative density, hardness, and flexural strength of the composite due to the transformation of the ZrO2 phase from tetragonal to monoclinic and grain coarsening. Optimal results were obtained with 1.0 wt% MnO2 and sintering at 1450 °C, which improved the mechanical properties (hardness: 13.5 GPa, flexural strength: 1.2 GPa, fracture toughness: 8.5 MPa m1/2) and lowered the sintering temperature compared to the conventional sintering temperature of ATZ composites (1550 °C). Thus, the ATZ composite doped with MnO2 is a promising material for structural engineering ceramics owing to its improved mechanical properties and lower sintering temperature.  相似文献   

8.
《Ceramics International》2022,48(15):21756-21762
Understanding the densification and grain growth processes is essential for preparing dense alumina fibers with nanograins. In this study, the alumina fibers were prepared via isothermal sintering at 1200, 1300, 1400, and 1500 °C for 1–30 min. The phase, microstructure, and density of the sintered fibers were investigated using XRD, SEM, and Archimedes methods. It was found that the phase transformation during the isothermal sintering enhances the densification of Al2O3 fibers in the initial stage, while the pores generated during the phase transformation retard the densification in the later period. The kinetics and mechanisms for the densification and grain growth of the fibers were discussed based on the sintering and grain growth models. It was revealed that the densification process of the fibers sintered at 1500 °C is dominated by the lattice diffusion mechanism, while the samples sintered at 1200–1400 °C are dominated by the grain boundary diffusion mechanism. The grain growth of the Al2O3 fibers sintered at 1200–1300 °C is governed by surface-diffusion-controlled pore drag, and that sintered at 1400 °C is dominated by lattice-diffusion-controlled pore drag.  相似文献   

9.
A mullite matrix containing homogeneously distributed ultra-fine (70–350 nm) pores was reinforced with NdPO4-coated woven mullite fibre mats (Nextel™ 720) leading to damage-tolerant composites with good high temperature (1300 °C) strength and thermal cycling resistance. Electrophoretically deposited fibre preforms were placed in a high-load pressure filtration assembly, leading to formation of consolidated compacts with high green densities. After sintering at 1200 °C for 3 h, the compacts had a density of 86.4% of theoretical density and showed damage-tolerant behaviour up to 1300 °C, with flexural strength values of 235 MPa and 224 MPa at room temperature and 1300 °C, respectively. No significant microstructural damage was detected after thermal cycling the samples between room temperature and 1150 °C for up to 300 cycles. The thermomechanical test results combined with detailed electron microscopy observations indicate that the overall composite behaviour in terms of damage-tolerance, thermal capability and thermal cycling resistance is mainly controlled by two microstructural features: (1) the presence of a dense NdPO4 interphase but weak bonding with the matrix or fibre and (2) the presence of homogeneously distributed nano pores (<350 nm) within the mullite matrix.  相似文献   

10.
In this study, a homogenously dispersed finer SiC particles-containing ZrB2 composite was prepared using nanosized polycarbosilane (PCS) particles-containing ZrB2 mixture powder, followed by hot pressing. The microstructure of the resulting composite was characterized by field-emission scanning electron microscopy and transmission electron microscopy. The composite microstructure comprised finer equiaxed ZrB2 and SiC grains. The mechanical behavior of the composite was evaluated using four-point bending test at different temperatures between room temperature (RT) and 1600°C. The results show that the composite exhibited only linear deformation behavior prior fracture at or below 1500°C. However, a trace quantity of nonlinear deformation was observed at 1600°C. In addition, the flexural strength of the composite decreased as the temperature increased from RT to 1200°C, then the strength increased as the temperature raised to 1400°C. Subsequently, the flexural strength remained almost the constant between 1400°C and 1600°C, with a strength of ~760 MPa.  相似文献   

11.
Mechanical properties of sintered mullite/SiC ceramics related to its significant crack healing behavior are discussed in this paper. This investigation was made on four kinds of specimens such as as-received smooth, heat treated smooth, pre-cracked and pre-crack healed. Pre-crack sizes were 100 and 200 μm and they were semi-elliptical in shape. The main conclusions were obtained as follows: (a) mullite/SiC composite ceramic has ability to heal crack, (b) the best healing condition was found to be 1300 °C in air for 1 h, (c) maximum crack size able to be healed is semi-elliptical crack of 200 μm in diameter, (d) crack-healed zone has enough strength up to 1200 °C and most specimens failed outside the crack-healed zone.  相似文献   

12.
In this study, SiC whiskers (SCWS) reinforced geopolymer composites (SCWS/KGP) and their ceramic products (SCWS/leucite) were prepared, and effects of SiC whiskers contents on the microstructure and flexural strength of the SCWS/KGP and SCWS/leucite composites were investigated. The results show that the whisker addition has little influence on both phase composition and thermal shrinkage of the KGP composites, but a suitable content of whisker will result in the improved flexural strength, and when the SCWS content is 2 wt%, flexural strength of the SCWS/KGP composite is enhanced by 95% compared with the neat geopolymer. The flexural strength of the composites can be further enhanced significantly after the composites being treated at 1100 °C and 1200 °C and flexural strength of the composite with SCWS content of 2 wt% was 107% and 125% higher than the untreated counterpart, respectively. The increase in flexural strength of the composites should be attributed to the strong leucite formation, whisker debonding and pulling out from matrix during the fracturing process based on the good interfacial bonding state between whisker and leucite matrix.  相似文献   

13.
Highly porous Si3N4 ceramics have been fabricated via freeze casting and sintering. The as-sintered samples were pre-oxidized at 1200–1400 °C for 15 min. The effect of pre-oxidation temperature on the microstructure, flexural strength, and dielectric properties of porous Si3N4 ceramics were investigated. As the pre-oxidation temperature increased from 1200 °C to 1400 °C, firstly, the flexural strength of the pre-oxidized specimens remained almost constant at 1200 °C, and then decreased to 14.2 MPa at 1300 °C, but finally increased to 25.6 MPa at 1400 °C, while the dielectric constant decreased gradually over the frequencies ranging from 8.2 GHz to 12.4 GHz. This simple process allows porous Si3N4 ceramics to have ultra-low dielectric constant and moderate strength, which will be feasible in broadband radome applications at high temperatures.  相似文献   

14.
《Ceramics International》2022,48(2):1532-1541
In order to improve the degree of matrix densification of SiCf/SiC composites based on liquid silicon infiltration (LSI) process, the microstructure and mechanical properties of composites according to various pyrolysis temperatures and melt infiltration temperatures were investigated.Comparing the microstructures of SiCf/C carbon preform by a one-step pyrolysis process at 600 °C and two-step pyrolysis process at 600 and 1600 °C, the width of the crack and microcrack formation between the fibers and matrix in the fiber bundle increased during the two-step pyrolysis process. For each pyrolysis process, the density, porosity, and flexural strength of the SiCf/SiC composites manufactured by the LSI process at 1450–1550 °C were measured to evaluate the degree of matrix densification and mechanical properties. As a result, the SiCf/SiC composite that was fabricated by the two-step pyrolysis process and LSI process showed an 18% increase in density, 16%p decrease in porosity, and 150% increase in flexural strength on average compared to the composite fabricated by the one-step pyrolysis process.In addition, among the SiCf/SiC specimens fabricated by the LSI process after the same two-step pyrolysis process, the specimen that underwent the LSI process at 1500 °C showed 30% higher flexural strength on average than those at 1450 or 1550 °C. Furthermore, under the same pyrolysis temperature, the mechanical strength of SiCf/SiC specimens in which the LSI process was performed at 1500 °C was higher than that of the 1550 °C although both porosity and density were almost similar. This is because the mechanical properties of the Tyranno-S grade SiC fibers degraded rapidly with increasing LSI process temperature.  相似文献   

15.
Monolithic zirconia materials (3Y‐TZP, 10Ce‐TZP, and 12Ce‐TZP) and their composites with 30 vol% alumina were produced. Low‐temperature aging degradation (LTAD) and mechanical properties of materials were investigated. For assessment of phase stability in the materials, aging experiments were performed in water at 90°C for 32, 64, and 128 days. The aging phenomenon was characterized and monitored using X‐Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Four‐point bending was used to determine the flexural strength of materials before and after aging treatment in water at 90°C for 2, 4, and 6 months. The aging experiments resulted in different phase transformation rates for the materials studied. The 12Ce‐TZP containing materials showed the highest resistance to low‐temperature aging and 3Y‐TZP containing materials showed the highest bending strength. When compared, no change in flexural strength was observed between the materials not exposed to aging and the aged materials.  相似文献   

16.
《Ceramics International》2016,42(4):4886-4892
Thermal insulation material made by hollow glass microspheres (HGM) with different content of aluminum–chrome–phosphate solution (ACP) and tetraethyl orthosilicate (TEOS) as binders was formed, dried and sintered at 250 °C, 450 °C or 650 °C for 2 h. Properties such as density, compressive strength, thermal conductivity and microstructure of the specimens were determined. It is found that TEOS improved the distribution of ACP and increased the compressive strength of the specimens. HGM bonded by appropriate amount of ACP and TEOS achieved preferable value of density, compressive strength and thermal conductivity which were significant for thermal insulation materials. The compressive strength of specimens sintered at 450 °C and 650 °C was higher than that of the specimens sintered at 250 °C.  相似文献   

17.
Y-TZP/玻璃复相牙科全瓷材料的烧结与性能   总被引:1,自引:0,他引:1  
在Y-TZP中加入五种不同比例的玻璃相,干压成型后在三种温度下烧结,观察材料的体积密谋、抗弯强度及微观形貌。结果表明,玻璃相含量为5wt%的复相材料1400℃烧结,抗弯强度高,微观形态分布均匀;玻璃相对材料烧结温度和性能有明显影响,既要有效低烧结温度,又具有优良的力学性能,才是最佳之选择。  相似文献   

18.
《Ceramics International》2020,46(8):11735-11742
Titanium carbide (TiC) composites containing 10 vol% silicon carbide whisker (SiCw) were spark plasma sintered at different temperatures of 1800, 1900, and 2000 °C under a pressure of 40 MPa and a holding time of 7 min. At the sintering temperature of 1900 °C, the relative density, Vickers hardness, and flexural strength of the sintered samples hit their maximum values of 98.7%, 24.4 GPa, and 511 MPa, respectively. The microstructural characteristics of the sintered samples were assessed by optical and field emission scanning electron microscopy (FESEM) and XRD. The results revealed that at 1900 °C, the dispersion of SiCw in the TiC matrix was homogenous, no chemical reaction took place between the reinforcement and the matrix, and produced a fine-grained microstructure. It was found that the thermal conductivity of SPSed samples did not have the same trend with relative density and mechanical properties. A maximum value of 32.3 W/mK was measured for the thermal conductivity of the composite sintered at 2000 °C.  相似文献   

19.
Diatomite, a natural silicate-based sedimentary rock, was densified by cold sintering at room temperature and 150°C under various pressures (100, 200, and 300 MPa) and using different NaOH water solutions (0–3 M). The relative density of cold sintered diatomite can be as high as 90%, a condition that can be achieved by conventional firing only at 1200–1300°C. The cold sintered materials maintain the same mineralogical composition of the starting powder (quartz, glass, and illite) and are constituted by well-deformed and flattened grains oriented orthogonally to the applied pressure. Conversely, an evident phase evolution takes place upon conventional firing with the formation of cristobalite and mullite. The bending strength of cold sintered artifacts can exceed 40 MPa and increases to ≈80 MPa after post-annealing at 800°C, such mechanical strength is much larger than that of conventionally pressed samples sintered at 800°C, which is only ≈1 MPa.  相似文献   

20.
《应用陶瓷进展》2013,112(1):38-43
Abstract

The influence of aluminium titanate particulates as second phase reinforcement for alumina matrix composites has been investigated with respect to sintering characteristics, microstructural development, and associated mechanical properties. Composites were fabricated by gel assisted extrusion, using boehmite gel as binder. The aluminium titanate precursor was synthesised by a sol-gel technique and dispersed intimately in the alumina matrix by a colloidal method. A boehmite sol was used as dispersing medium and the extrudable composite paste with high viscosity and yield stress was obtained by controlled gelation followed by filtration. The extruded composite was dried and sintered at a temperature in the range 1350-1550°C. The sintered bodies were characterised in terms of density, room temperature flexural strength, microhardness, and microstructure. Aluminium titanate contents up to 10 wt-% were found to lower the sintering temperature of alumina, from 1550 to 1400°C. The composite sintered at 1400°C attained 97% of theoretical density and showed room temperature flexural strength of 318 MPa and microhardness of 21 GPa. The addition of aluminium titanate resulted in a high density alumina composite at lower sintering temperature with an average grain size of about 2 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号