首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Transparent cobalt‐doped magnesium aluminate spinel (Co:MgAl2O4) ceramics with a submicrometer grain size were prepared by spark plasma sintering. For the first time, the nonlinear absorption of Co:MgAl2O4 transparent ceramics was experimentally demonstrated. Both ground state absorption (σGSA) and excited state absorption (σESA) were estimated using the solid‐state slow saturable absorber model based on absorption saturation measurements performed at 1.535 μm. σGSA and σESA for 0.03 at.% Co:MgAl2O4 were found to be 4.1 × 10?19 cm2 and 4.0 × 10?20 cm2, respectively. In the case of 0.06 at.% Co:MgAl2O4 ceramics, σGSA = 2.6 × 10?19 cm2 and σESA= 5.3 × 10?20 cm2 were determined.  相似文献   

2.
《Ceramics International》2023,49(4):5770-5775
In this work, MgAl2O4: Cr3+ transparent ceramics have been synthesized by the hot press sintering techniques, and the effect of the sintering aid Gd2O3 and its content on the densification, microstructure, and optical, photoluminescence was studied and discussed. The relative density reached 99.29% with 0.8 wt% Gd2O3 as a sintering aid, and the optical transmittance at 686 nm and 1446 nm were approximately 76%. As Gd2O3 content continued to increase, the grain size of the ceramics became smaller and uniform, accompanied by some pores with the size of ~1 μm. The ceramics with 4.0 wt% Gd2O3 showed a higher transmittance, of 82% at 1446 nm. Additionally, Gd2O3 was helpful for Cr3+ in the sites of octahedral symmetry, which increased the quantum yield. The quantum yield of MgAl2O4: Cr3+ with 0.8 wt% Gd2O3 was about 0.175, which was 36% higher than that of ceramic without Gd2O3. In short, the sintering aid Gd2O3 not only contributed to improving the densification, homogenizing the grain size, and heightening the optical transmittance but also enhanced the quantum yield of Cr3+.  相似文献   

3.
Initial investigations on the preparation of highly transparent Fe2+:MgAl2O4 ceramics using nanopowders synthesized in a laser plume were carried out. For the first time, dense Fe2+:MgAl2O4 ceramics with high transmission in the mid-IR range were fabricated at a temperature as low as 1300°C and with a short sintering time (1 hour). The obtained Fe2+:MgAl2O4 ceramics contain a secondary (MgO)0.91(FeO)0.09 phase with a low wt% content, causing a substantial decrease in transmittance in the visible range. The transmittance increases with an increase in wavelength due to a decrease in Rayleigh scattering and reaches 85.6% at λ = 4 μm, which is close to the theoretical value. The absorption cross section of divalent iron ions was estimated to be σ = (1.66 ± 0.14) × 10−20 cm2.  相似文献   

4.
0.5 at.% Cr:ZnGa2O4 precursor was synthesized by the co-precipitation method with nitrates as raw materials, using ammonium carbonate as the precipitant. Low-agglomerated Cr:ZnGa2O4 powders with an average particle size of 43 nm were obtained by calcining the precursor at 900℃ for 4 h. Using the powders as starting materials, 0.5 at.% Cr:ZnGa2O4 ceramics with an average grain size of about 515 nm were prepared by presintering at 1150℃ for 5 h in air and HIP post-treatment at 1100℃ for 3 h under 200 MPa Ar. The in-line transmittance of 0.5 at.% Cr:ZnGa2O4 ceramics with a thickness of 1.3 mm reaches 59.5% at the wavelength of 700 nm. The Cr:ZnGa2O4 ceramics can be effectively excited by visible light and produce persistent luminescence at 700 nm. For Cr:ZnGa2O4 transparent ceramics, the brightness of afterglow was larger than 0.32 mcd/m2 after 30 min, which is far superior to that of Cr:ZnGa2O4 persistent luminescence powders.  相似文献   

5.
The ethanolaminic salt of citric acid (commercial name Dolapix CE 64) has commonly been used as a dispersant for colloidal based ceramic forming process. In this paper, a surprise was presented that MgAl2O4 spinel slurries consisting of MgAl2O4 spinel nanoparticles and Dolapix CE 64 gelled in air at room temperature spontaneously. The MgAl2O4 spinel slurries with high solid loading (54 vol%) were prepared with Dolapix CE 64 and the green body with up to 57% relative density was obtained. MgAl2O4 transparent ceramics with small grain size (0.92 μm) and high transmittance (81.7% at 600 nm) were fabricated after pre-sintering at 1500°C and hot-isostatic sintering at 1550°C.  相似文献   

6.
Magnesium aluminum oxynitride (Mg0.27Al2.58O3.73N0.27, termed as MgAlON) ceramics with high transparency and complicated shape was prepared by aqueous gelcasting, pressureless sintering, and followed by hot isostatic pressing. No obvious hydration was found by the characterizations of X-ray diffraction, pH value, Fourier transform infrared and thermal analysis for the interaction between MgAlON spinel powders and water, leading to the stable MgAlON slurry with high solid loading (52 vol%) and low viscosity. This result may be due to different composition of MgAlON from that of MgAl2O4 and AlON. Besides, transparent MgAlON ceramic (1.95 mm in thickness) with a high in-line transmittance ~86.3% at 3.7 μm was fabricated. The refractive index ~1.7499 at 589.3 nm and absorption coefficient ~1.2 cm−1 at 5 μm of MgAlON are between those of AlON and MgAl2O4 transparent ceramics, and Abbé number ~73.66 of MgAlON is the highest.  相似文献   

7.
Porous MgAl2O4 ceramics designated as THERMOSCATTTM have diffuse reflectance based on the Mie theory. The reflectance greatly suppresses radiation heat transfer and has low emissivity at 1–5 μm wavelengths. Their thermal conductivity has been measured as less than 0.3 W/(m K) at 1500°C. Furthermore, porous MgAl2O4 ceramics have near-zero hemispherical spectral emissivity values at 0.35–5 μm wavelengths. High heat resistance and low emissivity materials in the atmosphere are useful for the innermost layer of industrial furnaces to confine energy efficiently. Additionally, this material is useful as a radiation reflectors, such as in stand-off thermal protection systems. This study elucidated the suppression of radiation transfer in porous MgAl2O4 ceramics attributable to low thermal emissivity. Therefore, the thermal insulation performance under radiation heating in vacuum, the emissivity validity evaluation of low-emissivity porous materials using finite element analysis, and microstructure effects on radiation heating performance and mechanical properties were investigated.  相似文献   

8.
In this article, 5 at.% Yb:Lu2O3 transparent ceramics were fabricated by vacuum sintering combined with hot isostatic pressing (HIP) posttreatment using co-precipitated nano-powders. The influence of precipitant molar ratio, ammonium hydrogen carbonate, to metal ions (AHC/M3+, R value) on the properties of Yb:Lu2O3 precursors and calcined powders was investigated systematically. It was found that the powders with different R value calcined at 1100°C for 4 hours were pure cubic Lu2O3 but the morphologies of precursors and powders behaved differently. The opaque samples pre-sintered at 1500°C for 2 hours grew into transparent ceramics after HIP posttreatment at 1750°C for 1 hour. The final ceramic with R = 4.8 showed the best optical quality with the in-line transmittance of 79.7% at 1100 nm. The quasi-CW laser operation was performed at 1034 nm and 1080 nm with a maximum output power up to 8.15 W as well as a corresponding slope efficiency of 58.4%.  相似文献   

9.
《Ceramics International》2023,49(10):15164-15175
Magnesium aluminate spinel (MgAl2O4) ceramics are high-performance and carbon-free materials widely used in both military and civilian fields. However, it is usually challenging to densify during the solid-state sintering process. The excellent properties of some rare earth oxides have been proved to promote the densification of MgAl2O4 spinel ceramics. But the mechanism of promoting sintering is not clear. In the present work, MgAl2O4 spinel ceramics have been successfully fabricated by co-doping CeO2 and La2O3 via a single-stage solid-state reaction sintering. The effects of addition amounts of CeO2 and La2O3 on phase compositions, microstructures, sintering characteristics, cold compressive strength, and thermal shock resistance of as-prepared MgAl2O4 spinel ceramics were systematically investigated. The results show that by co-doping CeO2 and La2O3 can increase the defect concentration due to the lattice distortion. This could promote the movement of Al3+ and Mg2+ at high temperature, which is beneficial to the formation of more secondary MgAl2O4 spinel. t-ZrO2 with more Ce4+ filling between spinel grains could prevent the growth of grains and promote the densification, besides the new-formed LaAlO3 that was mainly distributed along the grain boundary of the MgAl2O4 phase, both of which were favorable for the formation of dense microstructure of MgAl2O4 spinel materials. At the same time, the formation of more secondary MgAl2O4 spinel and sintering densification also improve the mechanical properties of spinel ceramics. La3+ will segregate to the spinel grain boundary, preventing grain boundary movement and absorbing the main crack's fracture energy. With 3 wt% CeO2 and 3 wt% La2O3 co-doping, the bulk density of the sample increased from 3.02 g∙cm−3 to 3.55 g∙cm−3; the apparent porosity decreased from 12.21% to 9.97%; the cold compressive strength increased from 172.88 MPa to 189.54 MPa; and the residual strength retention ratio after thermal shock increased from 84.92% to 89.15%.  相似文献   

10.
Transparent 0.6 at% Nd:Y2O3 ceramics were fabricated by vacuum sintering at 1550°C and hot isostatic pressing (HIP) at 1540°C. The ceramics sintered at such temperatures had good homogeneity with dense microstructures, without any residual pores and secondary phases. The in-line transmittance reached 81.6% at 1000 nm and remained 81.1% at 650 nm. Continuous wave (CW) laser operation of an uncoated ceramic slab was evaluated. A maximum output power of 3.6 W with slope efficiency of 45.2% at 1.08 μm was obtained.  相似文献   

11.
《Ceramics International》2017,43(9):6891-6897
Transparent magnesium aluminate spinel (MgAl2O4) ceramics were fabricated by hot-pressing of the MgO and α-Al2O3 powder mixture using LiF as a sintering aid. Effects of the LiF additive on densification, microstructure and optical properties of MgAl2O4 ceramics were systematically investigated. It has been found that the addition of LiF can effectively remove the porosity and increase the optical transparency of MgAl2O4 ceramics. For the spinel ceramics HP-ed at 1550 °C for 3 h with 1 wt% LiF addition, the average grain size is about 36 µm and the in-line transmittance exceeds 60% at the wavelength of 800 nm.  相似文献   

12.
《Ceramics International》2016,42(16):18215-18222
Porous MgAl2O4 ceramics were prepared via a low cost foam-gelcasting route using MgAl2O4 powders as the main raw material, ammonium polyacrylate as a dispersant, a small amount of modified carboxymethyl cellulose as a gelling agent, and TH-IV polymer as a foaming agent. The effects of additive's content, solid loading and gelling temperature on slurry's rheological behavior were investigated, and microstructures and properties of as-prepared porous MgAl2O4 ceramics examined. Based on the results, the roles played by the foaming agent in the cases of porosity, pore structure, pore size, mechanical properties and thermal conductivity were clarified. Porosity and pore sizes of as-prepared porous MgAl2O4 ceramics increased with increasing the foaming agent from 0.05 to 0.6 vol%. Porous MgAl2O4 ceramics with porosity of 75.1% and average pore size of 266 µm exhibited a compressive strength as high as 12.5±0.8 MPa and thermal conductivity as low as 0.24 W/(m K) (at 473 K).  相似文献   

13.
《Ceramics International》2023,49(1):101-108
2 at.% Tm, xat.% Dy:Y2O3 (x = 0, 0.1, 0.5 and 1) transparent ceramics were fabricated via vacuum sintering. The microstructural properties of the prepared ceramics were determined using XRD and SEM. The absorption cross-section of 2 at.% Tm, 1 at.% Dy:Y2O3 ceramic was 0.53 × 10?20 cm2 with the FWHM of 43.59 nm. The increased cross-section originates from a large overlapping range appearing in the absorption spectrum of the Dy3+:6H15/2 → 6F5/2 and Tm3+:3H66H4 transitions. The J-O intensity parameters Ω2, Ω4 and Ω6 and the fluorescence characteristics of the pivotal luminescent level of the Dy3+ ions were investigated. Under 793 nm excitation, the emission cross section of the Tm,Dy:Y2O3 ceramic at 3094 nm was 3.63 × 10?21 cm2 with the FWHM of 355 nm. The fluorescence lifetimes of Dy3+:6H13/2 level of 2 at.% Tm, xat.% Dy:Y2O3 (x = 0.1, 0.5 and 1) ceramics were fitted to be 357 μs, 282 μs and 149 μs, respectively. In order to explore the quenching mechanism of Tm3+:3F4 level, the fluorescence lifetimes of Tm3+:3F4 of the 2 at.% Tm, xat.% Dy:Y2O3 ceramics (x = 0, 0.1, 0.5 and 1) were measured to be 4.878 ms, 462 μs, 104 μs and 61 μs, respectively. The possible energy transfer mechanisms between Tm3+ and Dy3+ ions are discussed. The results show that adding Tm3+ ions to Dy:Y2O3 ceramics can effectively enhance the 2.9 μm MIR through energy transfer.  相似文献   

14.
The aqueous gel-casting technology has been widely used to prepare high-quality green body for various transparent ceramics with large dimension and complex shape. However, owing to the severe hydrolysis of MgAl2O4 powder, it is challenging to obtain thick aqueous slurry with high homogeneity and flowability. In this paper, the surface chemical state of MgAl2O4 powder was modified by introducing Ga3+, and stable MgAl1.9Ga0.1O4 aqueous slurry with high solid-phase loading (52 vol. %) and low viscosity (136 mPa·s, at a shear rate of 50 s-1) was successfully prepared. After pressureless presintering and hot isostatic pressing, the gel-cast sample exhibited much higher optical transmittance and more homogeneous microstructure than the dry-pressed sample, which is mainly derived from the improved homogeneity and densification of the green bodies and ceramics. The optical band gap, infrared cutoff wavelength, static refractive index and dispersion of both MgAl1.9Ga0.1O4 and MgAl2O4 transparent ceramics were systematically compared. It is indicated that the transparent MgAl1.9Ga0.1O4 ceramic has the increscent static refractive index of 1.695, the decrescent direct band gap energy of 6.15 eV and absorption coefficient of 0.49 cm-1 at 5 µm, which could be ascribable to the fact that Ga3+ has different electronic structure, higher electronic polarizability and larger ionic radius in comparison with Al3+. This work provides a dependable solution for preparation of spinel oxide ceramics with superior optical properties and large dimension.  相似文献   

15.
We report on our recent progress of fabricating Yb3+-doped Lu2O3 transparent ceramics for 1 μm solid-state laser application. Well-dispersed 3.3 at.% Yb:Lu2O3 nanopowders were synthesized using a co-precipitation method. Without using any sintering aids, the Yb:Lu2O3 nanopowders could be densified by vacuum sintering at 1500°C/10 hours followed by HIPing at 1480°C/4 hours. Such obtained Yb:Lu2O3 ceramics had not only dense microstructure and submicron grain size of about 0.6 μm, but also in-line transmission of 80.0% at 600 nm. Preliminary continuous wave (CW) laser experiments with an uncoated Yb:Lu2O3 ceramic slab have demonstrated highly efficient CW laser oscillation at 1079.8 nm.  相似文献   

16.
Tetravalent chromium‐doped Y3Al5O12 ceramics were fabricated by solid‐state reactive sintering method using high‐purity Y2O3, α‐ Al2O3, and Cr2O3 powders as the starting materials. CaO and MgO were co‐doped as the sintering aids. The effects of TEOS and divalent dopants (CaO and MgO) on the optical qualities, the conversion efficiency of Cr4+ ions, and the microstructure evolutions of 0.1 at.% Cr4+: YAG ceramics were investigated. Fully dense, dark brown colored Cr4+: YAG ceramics with an average grain size of 3.1 μm were achieved. The in‐line transmittance of the as‐prepared ceramic at 2000 nm was 85.3% (4 mm thick), and the absorption coefficient at 1030 nm (the characteristic absorption peak of Cr4+ ions) was as high as 3.7 cm?1, which was higher than that of corresponding single crystals fabricated by Czochralski method.  相似文献   

17.
Transparent terbium aluminum garnet (TAG)-based ceramics were fabricated by vacuum pre-sintering and hot isostatic pressing (HIP) posttreatment from the co-precipitated TAG powders with different stoichiometric ratios. After component optimization, the transparent ceramics with TAG single-phase and attractive optical quality were obtained. The in-line transmittance of optimal Tb(1+x)3(Al0.996255Si0.003745)5O12.0093625+3x/2 (x = −.004, −.002) ceramics (1.7-mm thick) pre-sintered at 1700°C for 20 h with HIP posttreatment at 1700°C for 3 h under 176-MPa Ar reaches 82.6% at the wavelength of 1064 nm. With increasing terbium components, the secondary phase TAP appears in ceramics, which significantly degrades the optical quality of TAG-based ceramics. The Verdet constant of the TAG-based ceramics at 632.8 nm is about −181 rad T−1 m−1 at room temperature, which is about 33% higher than that of the TGG single crystals (−134 rad T−1 m−1).  相似文献   

18.
《Ceramics International》2020,46(4):4154-4158
Highly transparent MgAl2O4 ceramics have been fabricated by aqueous gelcasting combined with cold isostatic pressing (CIP), pressureless sintering and hot isostatic pressing (HIP) from high purity spinel nanopowders. The gelling system used AM and MABM as monomer and gelling agent. The influences of dispersant and PH on the rheological behavior of the MgAl2O4 slurries were investigated. The spinel slurry with low solids loading (25 vol%) and low viscosity (0.15 Pa s) was obtained by using 6 wt% Duramax-3005 (D-3005) as dispersant. After CIP, the green body had a relative density of 48% with a narrow pore size distribution. The influence of sintering temperature on densification and microstructure was studied, choosing 1500 °C as the sintering temperature. After HIP (1650 °C/177 MPa/5 h), transparent MgAl2O4 ceramic with the thickness of 3 mm was obtained, whose in-line transmittance was 86.4% at 1064 nm and 79.8% at 400 nm, respectively. The ceramic exhibited a dense microstructure with the average grain size of 23 μm. The Vickers hardness and flexure strength of the sample reached 13.6 GPa and 214 MPa, respectively.  相似文献   

19.
Ce,Ca:LuAG scintillation ceramics with different Ca2+ co-doping concentrations were prepared by the solid-state reaction method. The concentration of Ce3+ was fixed at 0.3 at% and the concentration of Ca2+ ranged from 0 to 1.2 at%. We systematically studied how the Ca2+ concentration affects the optical quality of Ce,Ca:LuAG ceramics by influencing the microstructure in the vacuum sintering and HIP post-treatment. Good optical transmittance could be obtained with Ca2+ concentrations between 0.05 and 0.8 at%, which reached 76.0–81.9 % at 520 nm. The PL and scintillation decay times decrease with increasing Ca2+ concentration up to 0.6 at% with no clear trend above this value. The light yield (LY) values at different shaping times decrease with increasing Ca2+ concentration but the fast scintillation component (LY0.5 μs/ LY3.0 μs) increases significantly from 79 % to 97 %. The co-doping of Ca2+ also reduces the afterglow level by more than one order of magnitude.  相似文献   

20.
《Ceramics International》2022,48(17):24788-24792
Lu3Al5O12 (LuAG) nanocrystalline powders were synthesized by using ammonium hydroxide (NH4OH, AH) and ammonium hydrogen carbonate (NH4HCO3, AHC) as mixed precipitant. In the absence of sintering aids such as TEOS, MgO or ZrO2, the obtained LuAG powders showed good sinterability in H2 atmosphere (PLSH) at low temperature. The in-line transmittance of LuAG ceramic reached 81% in the whole visible light band from 400 nm to 800 nm. The average grain size of obtained transparent ceramics was ranged in 1–6 μm at different sintering temperatures by PLSH. Various kinds of rare earth ions, such as Nd, Yb, Ce, Pr, and Tm doped RE:LuAG transparent ceramics could be prepared by PLSH technology without sintering aids and HIP post-treatment. Through PLSH technology, RE:LuAG transparent ceramics show high optical quality and large aperture size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号