首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Better understanding of the effect of multimode‐microwave sintering of zirconia‐toughened alumina (ZTA) was investigated. A comparative dilatometric analysis was conducted between conventional and microwave heating processes, to clarify the influence of zirconia on the densification of ZTA under electromagnetic field. The thermal gradient on sample measurements indicates the change to the microwave volumetric heating is improved by zirconia which adsorbs microwave energy better, thus acting as a susceptor. The most beneficial effect on microstructure, toughness, and hardness were observed at the optimal zirconia content of 10 vol%. The results with both microwave and conventional sintering illustrate the strengthening effect on the composite by zirconia. Of special interest, multimode microwave sintering creates a finer homogeneous microstructure, with resulting hardness and toughening comparable to those obtained for conventional sintering, as well as improved densification, and at lower cost.  相似文献   

2.
This paper presents a thorough analysis of direct microwave heating as a sintering process of ceramic materials. It questions why susceptor-assisted microwave heating is used in most experimental works, although direct microwave coupling is preferable for taking advantage of the possible beneficial effects of the microwave field on the sintering phenomena. This issue was investigated by conducting both experiments and numerical simulations. The experiments consisted of sintering alumina and yttria doped zirconia powder samples in a 2.45 GHz resonant cavity with automatic thermal monitoring, whereas the numerical simulations coupled electromagnetics, thermal transfer and sample deformation. Alumina and yttria doped zirconia are widely used materials and they exhibit different microwave field behaviours (transparent and absorbent, respectively), which are representative of most ceramic materials. The influence of the insulating material was discussed by considering different sintering cell designs. The very low coupling capacity of alumina made its direct heating very difficult. It was therefore necessary to apply a strong electric field to heat it. This situation promoted the absorption of microwave energy by other elements such as the insulating material, leading to heating instabilities and degradation of the insulation cell. In the case of zirconia, its coupling properties change abruptly with increasing temperature. It is poorly absorbent at low temperature, highly absorbent at intermediate temperature and it finally becomes reflective at the end of the sintering process. The consequences of this behaviour are (i) a very difficult control of direct heating (ii) a propensity to form damaging hot spots and (iii) the impossibility to reach high temperatures without forming plasma. Therefore, this experimental and numerical study showed that direct microwave heating is not suitable for conducting reliable and homogeneous sintering of classical ceramics. This explains why susceptor-assisted heating is most of time preferred.  相似文献   

3.
A method is discussed for etching stabilized zirconia using microwave heating. Microstructural features of microwave-sintered stabilized zirconia are revealed by this technique. This approach requires less time at temperature than conventional thermal etching to achieve comparable results.  相似文献   

4.
The poor interlaminar properties restrict the application of carbon fiber reinforced polymer (CFRP) composites. In this work, a novel method for fabricating a graded interface structure is developed to improve the through-thickness thermal conductivity of CFRP composites. High-strength graphene nano-plates (GnP) and phenolic resin (PF) were selected to deposit on the surface of carbon fiber to design a novel CF/Epoxy laminates, where a simultaneous improvement of interlaminar shear strength (ILSS) and through-thickness thermal conductivity was observed. With addition of 1 wt % of GnP-PF in CF, 37.04% increase of the ILSS, and 16.67% enhancement of thermal conductivity compared to the original CFRP. The mechanism for improvement of both ILSS and thermal conductivity was studied by scanning electron microscopy and nano-indentation, where a better interface formed by GnP-PF has been clearly observed. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47061.  相似文献   

5.
《Ceramics International》2023,49(10):15442-15450
Carbon nanotubes (CNTs) are widely used in ceramic-matrix composites (CMC) as a filler. An individual carbon nanotube exhibits extremely high thermal conductivity, however, the influence of CNTs on the thermal conductivity of CMCs is moderate. In contrast, even a small quantity of CNTs significantly increases the electrical conductivity of CMCs. The present paper studies this contradictory influence for ZrO2-CNTs composites with 3, 5, 10 and 20 vol% multi-wall carbon nanotubes (MWCNTs). Their thermal and electrical conductivity was studied by the laser flash method and electrochemical impedance spectroscopy. The analysis reveals that the moderate influence of MWCNTs on the thermal conductivity of composites originates from the similar thermal conductivity of MWCNTs in a bundle and zirconia. On the other hand, the substantial difference in the electrical conductivity of MWCNTs and zirconia leads to an exponential increase in the electrical conductivity of the ZrO2-CNTs composite even with small additions of nanotubes.  相似文献   

6.
The thermal conductivity of hemp fiber reinforced polymer composites were studied from the steady state temperature drop across samples exposed to a known heat flux. The transverse and in-plane thermal conductivities for oriented and randomly oriented composites for different volume fractions of fiber were investigated. Experimental results showed that the orientation of fibers has a significant effect on the thermal conductivity of composites. To validate the experimental results, the heating tests for the thermal conductivity measurements were simulated by a finite element model using the thermal conductivity values obtained from the experiments. Predicted temperatures show close agreement with measured temperatures. Moreover, the experimental results of thermal conductivities of composites at different directions were compared with two theoretical models and illustrated good agreement between the obtained results and models. POLYM. ENG. SCI. 47:977–983, 2007. © 2007 Society of Plastics Engineers  相似文献   

7.
Effective thermal conductivity of composites of graphite foam infiltrated with phase change materials (PCM) was investigated numerically and experimentally. Graphite foam, as a highly-conductive, highly-porous structure, is an excellent candidate for infiltrating PCM into its pores and forming thermal energy storage composites with improved effective thermal conductivity. For numerical simulation, the graphite structure was modeled as a three-dimensional body-centered cube arrangement of uniform spherical pores, saturated with PCM thus forming a cubic representative elementary volume (REV). Thermal analysis of the developed REV was conducted for unidirectional heat transfer and the total heat flux was determined, which leads to the effective thermal conductivity evaluation. For experimental verification, a sample of graphite foam was infiltrated with PCM. The effective thermal conductivity was evaluated using the direct method of measuring temperature within the sample under fixed heat flux in unidirectional heat transfer. The results indicate a noticeable improvement in the effective thermal conductivity of composites compared to the PCM. Our numerical and experimental results are in agreement and are also consistent with reported experimental results on graphite foam. Moreover, the role of natural convection within the pores is found to be negligible.  相似文献   

8.
本文采用XRD方法对微波热处理前后具有不同含量的氧化钇稳定氧化锆增韧氧化铝陶瓷的相变行为进行了研究。实验结果表明微波处理过程中,低含量Y_2O_3稳定ZTA陶瓷表面几乎皆为单斜相,当Y_2O_3含量超过2mol%时则四方相含量剧增,其原因在于ZTA陶瓷微波处理引起体积性加热造成较大的内外温差,使得内应力缓解了基质对ZrO_2的约束而发生t—ZrO_2=m—ZrO_2相变。同时如果调节稳定剂含量适中(如2mol%Y_2O_3),并对瓷体进行微波特殊处理后可获得较高的断裂相变量,有利于相变增韧陶瓷力学性能改善及损伤部件的性能自回复。  相似文献   

9.
The through‐thickness thermal conductivity of polymer composite molds has a strong effect on out‐of‐autoclave manufacturing operations. Limited thermal conductivity and variability data is available for composites made from carbon fibers that are widely used in mold and aircraft construction. This article presents in‐plane and through‐thickness thermal conductivity data for structural carbon fiber polymer composites made from three types of reinforcements. Variability is quantified in all cases. Techniques for the predictive modeling of through‐thickness transverse thermal conductivity are assessed. Effects of variations in model geometry on conductivity are quantified. Conclusive observations on variability and recommendations on modeling techniques appropriate for the different reinforcements are made. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

10.
CaZrO3 samples were prepared by in situ decomposition pore forming technology in this paper. The influence of calcia/zirconia molar ratio and heating treatment on the microstructure and thermal conductivity of the sintered samples were investigated. The phase analysis of CaZrO3 samples was detected by X-ray diffraction, and the microscopic morphology of CaZrO3 was observed by scanning electron microscope combined with energy dispersive spectrometer for microzone composition analysis. The results showed that a satisfied CaZrO3 sample could be obtained by in situ decomposition pore forming technology with calcium/zirconium molar ratio of 1:1.02. The CaZrO3 grains were developed better when the samples were preheated at 200°C first and then heated at 1600°C for 3 h. The apparent porosity of CaZrO3 samples were increased to 28.5%, and the thermal conductivity reduced to 1.219 W/(m·K) compared with the heavy CaZrO3 samples, which could be used as CaZrO3 refractory aggregates with the lower thermal conductivity.  相似文献   

11.
Multi-walled carbon nanotubes (MWCNTs) are often reported as additives improving mechanical and functional properties of ceramic composites. However, despite tremendous efforts in the field in the past 20 years, the results are still inconclusive. This paper studies room temperature properties of the composites with polycrystalline alumina matrix reinforced with 0.5–2 vol.% MWCNTs (composites AC) and zirconia toughened alumina with 5 vol.% of yttria partially stabilised zirconia (3Y-PSZ) containing 0.5–2 vol.% of MWCNTs (composites AZC). Dense composites were prepared through wet mixing of the respective powders with functionalised MWCNTs, followed by freeze granulation, and hot-pressing of granulated powders. Room temperature bending strength, Young's modulus, indentation fracture toughness, thermal and electrical conductivity of the composites were studied, and related to their composition and microstructure. Slight increase of Young's modulus, indentation fracture toughness, bending strength, and thermal conductivity was observed at the MWCNTs contents ≤1 vol.%. At higher MWCNTs contents the properties were impaired by agglomeration of the MWCNTs. The DC electrical conductivity increased with increasing volume fraction of the MWCNTs.  相似文献   

12.
In this study, silicon carbide (SiC) composites reinforced with pitch-based carbon fibers and composed of heat transfer channels were fabricated by combining chemical vapor infiltration and reactive melting infiltration method. It was observed that the internal heat conduction skeleton of pitch-based carbon fibers was sequentially formed. The thermal conductivities from room temperature to 500 °C along through-thickness direction and in-plane direction were investigated. The results showed that Cpf/SiC composites with heat transfer channels possessed excellent thermal conductvity in two directions, and the thermal conductivity increased with increasing volume content of heat transfer channels. The thermal conductivity in through-thickness direction reached 38.89 W/(m·K), and that for in-plane direction reached 112.42 W/(m·K). Theoretical calculations were empolyed to study the temperature dependence of the Cpf/SiC composites. The variations in slope A′ and intercept B′ values of fitted curves were in good agreement with the experimental results. To verify the reliablilty of the theoretical model, the Cpf/SiC composites were heated at 1650 °C for 2 h and the thermal conductivity exhibited further improvement due to the formation of more perfect crystalline structure. Thermal conductivity through thickness direction improved to 43.49 W/(m·K), and that in in-plane direction improved to 142.49 W/(m·K), which could be identified by the theoretical model. Finally, the leading edge model was established by using ABAQUS finite element analysis software to evaluate the potential application of the composites. Owing to the outstanding thermal conductivity, the leading edge obtained by using Cpf/SiC composites in this study exhibited lower temperature gradient and a more uniform temperature distribution. Moreover, less thermal stress and displacement were generated during heating process.  相似文献   

13.
高性能定形复合相变储能材料的制备及热性能   总被引:3,自引:2,他引:1       下载免费PDF全文
仵斯  李廷贤  闫霆  代彦军  王如竹 《化工学报》2015,66(12):5127-5134
对现有定形复合相变材料的制备方法进行改进,采用“熔融吸附-模压成型”的方法,以硬脂酸(stearic acid,SA)为相变材料,膨胀石墨(expanded graphite,EG)为多孔基体,制备了16种不同参数的样品,并对其进行了微观形貌表征、热物性测试、热稳定性研究及热性能分析。相关研究表明:SEM微观形貌显示样品内部出现致密的石墨片层结构,SA均匀分布在石墨片层中,且压块密度越大,片层结构形态越规则;DSC测试结果显示样品几乎没有过冷度,EG的加入与压块处理对SA本身的相变潜热和相变温度几乎没有影响;Hot Disk测试结果显示EG的加入显著提高了样品的轴向和径向热导率,随着EG含量的增加,径向热导率高达23.77 W·m-1·K-1,发现两个方向上热导率的差异随压块密度的增加而增大,最大相差5.4倍;储/放热循环实验发现压块密度越大、EG含量越低的样品,SA越容易发生泄漏;通过成型密度及质量配比的优化可实现对复合材料的热稳定性调控,发现EG质量分数为25%、密度为950 kg·m-3的样品具有较好的综合性能。与传统定形复合相变材料的成型方法相比,该方法可进一步提高复合相变材料的综合热性能,与纯相变材料相比其热导率可提高130倍以上,且具有简单易操作的特点。  相似文献   

14.
To fulfill the demands of more bandwidth in 5G and 6G communication technology, new dielectric substrates that can be co-fired into packages and devices that have low dielectric loss and improved thermal conductivity are desired. The motivation for this study is to design composites with low dielectric loss (tan δ) and high thermal conductivity (κ), while still limiting the electrical conductivity, for microwave applications involving high power and high frequency. This work describes the fabrication of high-density electroceramic composites with a model dielectric material for cold sintering, namely sodium molybdate (Na2Mo2O7), and fillers with higher thermal conductivity such as hexagonal boron nitride. The physical properties of the composites were characterized as a function of filler vol.%, temperature, and frequency. Understanding the variation in measured properties is achieved through analyzing the respective transport mechanisms.  相似文献   

15.
The selective distribution of fillers in multi-phase polymer blends was dramatically studied to deal with thermal management fields issues. Concerning thermodynamic and kinetic effects of fillers on immiscible polymer blends, the compatibilization of fillers on phase morphology evolution and final construction of thermal conductive pathways were rarely discussed. In this work, BN fillers and polar dispersed phase were introduced into PE through various processing methods. The result showed that filler-coated shell was formed around the larger-sized dispersed phase, thereby forming more thermal conductivity network with other fillers in the two-step processing composites. When the BN content was 20 phr, the thermal conductivity was 0.8271 W/(m·K) for PE/PA6/BN-two steps composites, which was 95.48% higher than that of PE/PA6 composites. From the perspective of the regulation of the morphological structure of the dispersed phase, this study can provide methods and basic data for improving the thermal conductivity of incompatible polymer blends.  相似文献   

16.
The paper addresses the new nanocomposite prepared by pressureless sintering method (PSM). The properties of the yttrium stabilized zirconia (Y-TZP)/zircon (ZrSiO4) composite obtained by PSM are discussed in terms of its structure and fabrication conditions that include the content of cordierite in the initial mixture of cordierite and Y-TZP nanopowders and sintering temperature. The structural information has been obtained by X-ray diffraction (XRD), high-resolution scanning and transmission microscopy, density measurements, as well as differential thermal analysis (DTA) and thermogravimetry (TG), while mechanical examinations included both measurements of fracture toughness and flexural strength. The obtained results point towards possibility of control the amount of tetragonal zirconia with nano-size grains in a final composite, by a selection of the proper sintering temperature. The interesting finding of this study concerns the coefficient of thermal conductivity of Y-TZP-based composites with zircon, fabricated from the powder with more than 15 vol.% content of cordierite, which appears to be lower than that of pure zirconia, despite the mixed materials exhibit high thermal conductivity. The DTA–TG examination confirmed excellent stability of the composite at the elevated temperatures and proved the lack of the nanocomposite oxidation.  相似文献   

17.
The objective of this study was to compare the mechanical properties between epoxy composites cured by thermal heating and microwave heating. Epoxy‐anhydride resins reinforced with glass fiber were cured in a domestic microwave oven and in a thermal oven. Hardening agents included methyl tetrahydrophthalic anhydride and methyl hexahydrophthalic anhydride. Microwave curing was carried out at various conditions, including 1‐, 2‐, and 3‐step heating cycle, whereby each cycle employed different power level and time. Mechanical properties were tested according to ASTM standards. It is found that the microwave‐cured composites produced mechanical properties as good as the thermally cured composites. The 2‐ and 3‐step heating cycle used in the microwave curing process produced better mechanical properties higher than those obtained from the microwaved 1‐step and thermally curing process. This is attributed to the slow increase in temperature during the beginning of the microwave curing process whereby the very low power level was applied in the first cycle of the multistep heating process. This affected the slower rate of viscosity increment, resulting in better wettability of the glass fiber with enhanced interfacial adhesion between the fibers and the resins. The viscosity of resins affected the homogeneity of the crosslinked structure. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1059–1070, 2006  相似文献   

18.
《Ceramics International》2020,46(4):4381-4393
Previously, we have developed several particle-reinforced castable ceramic composites for refractory applications with exposure to thermal shock and measured their effective thermo-elastic properties experimentally. These composites contained silicon-carbide (SiC) solid particles, zirconia (ZrO2) bubbles, and ZrO2 solid particles, dispersed in an alumina (Al2O3) matrix. The present work aims to implement representative volume element (RVE) approach and periodic boundary condition (PBC) to accurately predict those properties, namely elastic and shear modulus, thermal conductivity, and coefficient of thermal expansion (CTE), using three-dimensional (3D) Finite Element (FE) simulations while accounting for the effect of porosity. In comparison to established micromechanical schemes and two-dimensional (2D) FE predictions, 3D FE simulations specifically show more accuracy in prediction of elastic properties and thermal conductivity. This novel and thorough comparison across various thermo-mechanical properties for complex microstructures (with up to three types of inclusions) can be valuable for designing comparable high volume fraction (VF) composites.  相似文献   

19.
Pyrrole was polymerized in the presence of anhydrous ferric chloride as oxidant and p‐toluene sulfonic acid as dopant. Polypyrrole‐coated short nylon fibers were prepared by polymerizing pyrrole in the presence of short nylon fibers. The resultant polypyrrole (PPy) and PPy‐coated nylon fiber (F‐PPy) were then used to prepare rubber composites based on acrylonitrile butadiene rubber (NBR). The cure pattern, direct current (DC) conductivity, mechanical properties, morphology, thermal degradation parameters, and microwave characteristics of the resulting composites were studied. PPy retarded the cure reaction while F‐PPy accelerated the cure reaction. Compared to PPy, F‐PPy was found to be more effective in enhancing the DC conductivity of NBR. The tensile strength and modulus values increased on adding PPy and F‐PPy to NBR, suggesting a reinforcement effect. Incorporation of PPy and F‐PPy improved the thermal stability of NBR. The absolute value of the dielectric permittivity, alternating current (AC) conductivity, and absorption coefficient of the conducting composites prepared were found to be much greater than the gum vulcanizate. PPy and F‐PPy were found to decrease the dielectric heating coefficient and skin depth significantly. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
Oil‐extended ethylene‐propylene‐diene rubber composites were prepared with aluminum hydroxide (ATH) and high abrasion furnace carbon black. The dielectric properties at microwave frequencies of the samples were measured in the S (2–4 GHz) band using cavity perturbation technique. The thermal stability of the composites was studied using thermogravimetric analysis. The morphology of the composites was investigated by scanning electron microscopic studies. The fire retardancy of the composites was identified through the limiting oxygen index and horizontal burning test (UL94 HB). The dielectric permittivity, AC conductivity, and absorption coefficient of the highly ATH loaded systems are much greater than the unfilled and lower systems. At higher loading, the dielectric heating coefficient and skin depth were found to decrease significantly. The incorporation of ATH was found to improve the thermal stability and flame retardancy of EPDM. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号