首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
改性纳米碳酸钙粉体的制备及其耐酸性   总被引:5,自引:0,他引:5  
丁士育  金鑫  陈欣 《硅酸盐学报》2005,33(3):350-353
公共沸蒸馏脱水后的纳米碳酸钙-正丁醇悬浮液中直接加入硬脂酸,制备了改性纳米碳酸钙粉体,确定了改性剂硬脂酸的最佳用量为纳米碳酸钙质量的3%。每100g改性纳米碳酸钙的吸油值为49.4g,活化度高达99.9%,比表面积为30.32m^2/g。用透射电镜,红外光谱分析,BET(Brunauer-Emmett-Teller)法等对改性纳米碳酸钙进行了表征。研究了改性纳米碳酸钙的耐酸的和耐酸性原因.即粒子表面形成的有机包敷层,使碳酸钙产生了一定的耐酸性能。  相似文献   

2.
纳米氧化锌的制备和表面改性   总被引:2,自引:0,他引:2  
以七水硫酸锌和碳酸氢钠为主要原料,采用室温固相法结合微波热分解法制备了纳米氧化锌。为改善氧化锌微粒表面的物理化学性质,采用硬脂酸对氧化锌表面进行改性,探讨了硬脂酸改性纳米氧化锌粉体的工艺条件、表面改性机理及其对粉体颗粒亲油性的影响。采用红外光谱对改性后纳米氧化锌进行了表征,结果表明硬脂酸和纳米氧化锌之间以共价键结合,改性后纳米氧化锌能更好地分散在有机溶剂里。纳米氧化锌表面改性的最佳工艺条件:硬脂酸质量分数为10%,改性温度为60℃,改性时间为40 m in。  相似文献   

3.
纳米碳酸钙的湿法表面改性   总被引:8,自引:0,他引:8  
向纳米碳酸钙悬浮液中直接加入硬脂酸钠,制得改性纳米碳酸钙粉体,确定了改性剂硬脂酸钠的最佳用量为3 g/100 g CaCO3、最佳改性时间(20-30 min)、最佳改性温度(70-80℃)。用红外光谱、扫描电镜等分析手段进行了验证,实验表明,每100 g改性纳米碳酸钙的吸油值降至35.2 g,而活化度增至90.2%,大大提高了碳酸钙的活性。  相似文献   

4.
纳米碳酸钙的表面改性   总被引:6,自引:1,他引:6  
陆宏志 《广东化工》2006,33(1):25-27
采用钛酸酯偶联剂对纳米碳酸钙进行表面改性,并对改性粉体进行了表征;钛酸酯偶联剂湿法改性纳米碳酸钙的最佳条件为:钛酸酯偶联剂的用量为3%,改性时间为1h,粉体浓度为20%,改性温度为80℃;改性后纳米碳酸钙粉体的吸油值为25.40g DOP/100g CaCO3,活化度为1,表明改性后的纳米碳酸钙已经由亲水性变为疏水性。  相似文献   

5.
本文中以不同用量硬脂酸“湿法”表面改性的纳米碳酸钙粉体为填料制备了室温硫化硅橡胶纳米复合材料,研究了不同用量硬脂酸的表面改性对于纳米碳酸钙颗粒表面性质、分散性以及硅橡胶纳米复合材料流变性能和力学性能的影响,并探讨了表面改性的作用机理。实验结果表明,表面改性剂硬脂酸用量越大,纳米粉体的表面改性效果越好,表面疏水性越优异,并且表面改性后的纳米粉体在硅橡胶中的分散性越好;另外,随着硬脂酸用量的增加,未硫化的硅橡胶纳米复合材料的动态储能模量(G’  相似文献   

6.
纳米碳酸钙的表面改性及其对PVC的增韧改性   总被引:6,自引:0,他引:6  
陆宏志 《河南化工》2006,23(2):26-28
采用钛酸酯偶联剂对纳米碳酸钙进行表面改性,并对改性后的粉体进行表征.钛酸酯偶联剂湿法改性纳米碳酸钙的最佳条件为:钛酸酯偶联剂的用量为3%,改性时间为1 h,溶液固含量为20%,改性温度为80 ℃.TEM结果表明,改性后的纳米碳酸钙粉体在环己酮中达到纳米级的分散,IR和TG分析表明,钛酸酯偶联剂主要以化学键的形式包覆在碳酸钙粉体表面,改性后的纳米碳酸钙吸油值显著下降,PVC/CaCO3复合材料的力学性能表明改性后的纳米碳酸钙能使复合材料的冲击强度达19.3 kJ/m2,增韧增强效果明显.  相似文献   

7.
ω-十一烯酸改性纳米碳酸钙工艺研究   总被引:1,自引:0,他引:1  
采用正交实验,以ω-十一烯酸作为表面改性剂,无水乙醇为分散介质,在一定的温度下对纳米碳酸钙粉体进行表面改性研究,确定改性纳米碳酸钙的最佳工艺条件为:改性剂用量3.0%,改性温度60℃,改性时间30min。改性后的纳米碳酸钙的吸油量(液体石蜡)降为40mL/100g,活化率提高到99.52%,表明改性后的纳米碳酸钙粒子亲油性得到显著提高。沉降速率和透射电镜(TEM)测试结果表明:改性后的纳米碳酸钙在亲油性溶剂中的分散性得到显著改善,粒度分布更加均匀。  相似文献   

8.
采用正交实验,以w-十一烯酸作为表面改性剂,无水乙醇为分散介质,在一定的温度下对纳米碳酸钙粉体进行表面改性研究,确定改性纳米碳酸钙的最佳工艺条件为:改性剂用量3.0%,改性温度60℃,改性时间30 min.改性后的纳米碳酸钙的吸油量(液体石蜡)降为40 mL/100g,活化率提高到99.52%,表明改性后的纳米碳酸钙粒子亲油性得到显著提高.沉降速率和透射电镜(TEM)测试结果表明:改性后的纳米碳酸钙在亲油性溶剂中的分散性得到显著改善,粒度分布更加均匀.  相似文献   

9.
选用硬脂酸钠对ZnO进行表面湿法改性,以环十五硅氧烷硅油为溶剂,PEG-10聚二甲基硅氧烷为分散剂,通过机械球磨法制备了纳米ZnO分散浆。利用水接触角、热重、TEM和FTIR对纳米ZnO粉体进行表征。结果表明,硬脂酸钠改性后,粉体具有疏水性,且硬脂酸钠最佳包覆量为6%(以ZnO的质量计,下同)。硬脂酸钠包覆量为6%的疏水性纳米ZnO粉体,包覆层厚度约为2 nm,此时水接触角最大为145.4°。模拟防晒乳液的防晒性能测试中,纳米氧化锌分散浆的紫外屏蔽性能显著优于粉体。流变特性测试表明,分散浆为假塑性流体,流动曲线符合Ostwald-de Wale幂律方程,具有剪切稀化特性;分散浆的黏度低,触变性小,储存稳定性高;温度升高,黏度降低,配方生产中对温度的敏感程度较小 。  相似文献   

10.
以无水乙醇为介质,用油酸和硬脂酸对纳米ZnO进行表面改性,将改性后的纳米粒子以粉末形式直接加入或制成苯乙烯悬浮液的形式经过高能超声作用加入不饱和聚酯(UPR)中制备ZnO/UPR复合材料。通过亲油化度、红外图谱来表征油酸和硬脂酸的改性效果。通过TEM分析粒子在UPR中的分散效果。在万能试验机上测量ZnO/UPR复合材料的弯曲强度。结果表明,油酸改性纳米ZnO的效果好于硬脂酸,高能超声作用可以很大程度提高纳米粒子在树脂体系里的分散性,粒子以苯乙烯悬浮液的形式加入UPR中的分散效果更好,纳米ZnO质量分数为1%时ZnO/UPR复合材料的弯曲性能最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号