首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This is a comparative study between ultrahigh molecular weight polyethylene (UHMWPE) reinforced with micro‐ and nano‐hydroxyapatite (HA) under different filler content. The micro‐ and nano‐HA/UHMWPE composites were prepared by hot‐pressing method, and then compression strength, ball indentation hardness, creep resistance, friction, and wear properties were investigated. To explore mechanisms of these properties, differential scanning calorimetry, infrared spectrum, wettability, and scanning electron microscopy with energy dispersive spectrometry analysis were carried out on the samples. The results demonstrated that UHMWPE reinforced with micro‐ and nano‐HA would improve the ball indentation hardness, compression strength, creep resistance, wettability, and wear behavior. The mechanical properties for both micro‐ and nano‐HA/UHMWPE composites were comparable with pure UHMWPE. The mechanical properties of nano‐HA/UHMWPE composites are better compared with micro‐HA/UHMWPE composites and pure UHMWPE. The optimum filler quantity of micro‐ and nano‐HA/UHMWPE composites is found to be at 15 wt % and 10 wt %, separately. The micro‐ and nano‐HA/UHMWPE composites exhibit a low friction coefficient and good wear resistance at this content. The worn surface of HA/UHMWPE composites shows the wear mechanisms changed from furrow and scratch to surface rupture and delamination when the weight percent of micro‐ and nano‐HA exceed 15 wt % and 10 wt %. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42869.  相似文献   

2.
Ultra‐high‐molecular‐weight polyethylene/poly (phenyl p‐hydroxyzoate) composites (coded as UHMWPE/PPHZ) were prepared by compression molding. The effects of the poly (phenyl p‐hydroxyzoate) on the tribological properties of the UHMWPE/PPHZ composites were investigated, based on the evaluations of the tribological properties of the composites with various compositions and the examinations of the worn steel surfaces and composites structures by means of scanning electron microscopy and transmission electron microscopy. It was found that the incorporation of the PPHZ led to a significant decrease in the wear rate of the composites. The composites with the volume fraction of the PPHZ particulates within 45% ~ 75% showed the best wear resistance. The friction coefficient of the UHMWPE/PPHZ composites decreased with increasing load and sliding velocity, while the wear rates increased with increasing load. This was attributed to the enhanced softening and plastic deformation of the composites at elevated load or sliding velocity. The UHMWPE/PPHZ composites of different compositions had differences in the microstructures and the transfer film characteristics on the counterpart steel surface as well. This accounted for their different friction and wear behaviors. The transfer film of the UHMWPE/PPHZ composites appeared to be thinner and more coherent, which was largely responsible for their better wear resistance of t composite than the UHMWPE matrix. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2336–2343, 2005  相似文献   

3.
We performed surface modification of ultra‐high‐molecular‐weight polyethylene (UHMWPE) through chromic acid etching, with the aim of improving the performance of its composites with poly(ethylene terephthalate) (PET) fibers. In this article, we report on the morphology and physicomechanical and tribological properties of modified UHMWPE/PET composites. Composites containing chemically modified UHMWPE had higher impact properties than those based on unmodified UHMWPE because of improved interfacial bonding between the polymer matrix and the fibers and better dispersion of the fibers within the modified UHMWPE matrix. Chemical modification of UHMWPE before the introduction of PET fibers resulted in composites exhibiting improved wear resistance compared to the base material and compared to unmodified UHMWPE/PET composites. On the basis of the morphological studies of worn samples, microploughing and fatigue failure associated with microcracking were identified as the principle wear mechanisms. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

4.
In this work, a compatibilizer (UHMWPE‐g‐GO) with large specific surface was prepared from graphene oxide (GO) and ultra‐high molecular weight polyethylene (UHMWPE). First, GO was modified by 2, 3‐epoxypropyltrimethylammonium chloride (GTA), subsequently grafted with UHMWPE. UHMWPE‐g‐GO was used to compatibilize the immiscible monomer casting (MC) nylon/UHMWPE blends. With the addition of very low content of UHMWPE‐g‐GO, the compatibility of UHMWPE and the matrix (MC nylon) was remarkably improved without visible agglomerates, which was proved by photographs, scanning electron microscope, dynamic thermomechanical analysis, and contact angle measurement. Therefore, thermal stability, mechanical and tribological properties were obviously increased. A dramatic increment of 94.1% in the impact strength and a decrement of 39.4% in the coefficient friction were observed in the presence of UHMWPE‐g‐GO in the immiscible polymer blends. The approach used in this work was an efficient strategy for immiscible polymer blends with ultra‐high molecular weight. POLYM. ENG. SCI., 57:335–344, 2017. © 2016 Society of Plastics Engineers  相似文献   

5.
In order to further improve the tribological performance of glass fiber reinforced epoxy (GF/EP) composites, highly flexible, binder‐free, molybdenum trioxide MoO3 nanobelt/graphene oxide (GO) film (f‐MoO3‐GO) is prepared by a hydrothermal method. Herein, f‐MoO3‐GO is adopted to modify GF/EP composites prepared through the vacuum‐assisted resin transfer molding method. The neat GF/EP and MoO3‐GO modified GF/EP composites are also fabricated for comparison. The tribological performance is performed using a ball‐on‐disc (“steel‐on‐polymer”) configuration under a dry sliding condition. The coefficient of friction is reduced from 0.61 for neat GF/EP composites down to 0.23 for f‐MoO3‐GO modified GF/EP (f‐MoO3‐GO/GF/EP) composites and the anti‐wear performance is improved by more than four times. The worn surface morphological observation for the composite samples is used to explain the possible wear micro‐mechanisms. The wear reducing effect of the f‐MoO3‐GO/GF/EP composites can be assigned to the increased self‐lubricating effect of f‐MoO3‐GO. With the combined advantageous properties of the used individual components, these unique composites can be used for many other applications.  相似文献   

6.
Porous ultrahigh‐molecular‐weight polyethylene (UHMWPE)‐based composites filled with surface‐modified Ce‐doped TiO2 nanoparticles (Ce–TiO2/UHMWPE) were prepared by template dissolution. The composites were characterized by Fourier transform infrared spectroscopy, ultraviolet (UV)–visible spectroscopy, diffuse reflectance spectra, and scanning electron microscopy); the photocatalytic activity was also evaluated by the decomposition of methyl orange under UV exposure. The results demonstrate that the severe aggregation of Ce–TiO2 nanoparticles could be reduced by surface modification via a silane coupling agent (KH570). The Ce–TiO2/UHMWPE porous composites exhibited a uniform pore size. Doping with Ce4+ effectively extended the spectral response from the UV to the visible region and enhanced the surface hydroxyl groups of the TiO2 attached to the matrix. With a degradation rate of 85.3%, the 1.5 vol % Ce–TiO2/UHMWPE sample showed the best photocatalytic activity. The excellent permeability of the porous composites is encouraging for their possible use in wastewater treatment. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Uniformly dispersed carbon nanotubes (CNTs) reinforced ultrahigh molecular weight polyethylene (UHMWPE) composites were successfully prepared by freeze‐drying method. Specifically, polymer powders were mixed with CNT aqueous paste, and then freeze‐dried. As a consequence, CNTs covered at the surface of UHMWPE powders evenly when CNT content was not very high, which improved the quantity of crystals and crystallinity of UHMWPE/CNTs composites by providing more nucleation sites during the upcoming compression‐molded process. Furthermore, optimized dispersion state of CNTs and concomitant higher crystallinity made freeze‐drying technique prepared composites display much lower wear rate when compared with pure UHMWPE and UHMWPE/CNTs composites fabricated by common heat‐drying method. In a word, our proposed method of freeze‐drying is simple and effective for mass production of UHMWPE/CNTs composites, and it is promising to be applied to fabricate many kinds of nanofillers modified polymer composites, for example, polymer/graphene material. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41885.  相似文献   

8.
Five kinds of polytetrafluoroethylene (PTFE)‐based composites, pure PTFE, PTFE + 30(v)% MoS2, PTFE + 30(v)% PbS, PTFE + 30(v)% CuS, and PTFE + 30(v)% graphite (GR) composites, were first prepared. Then the friction and wear properties of these PTFE composites, sliding against GCr15‐bearing steel under both dry and liquid paraffin‐lubricated conditions, were studied by using an MHK‐500 ring‐on‐block wear tester. Finally, the worn surfaces and the transfer films of the PTFE composites formed on the surface of GCr15 bearing steel were investigated by using a scanning electron microscope (SEM) and an optical microscope, respectively. Experimental results show that filling with MoS2, PbS, CuS, or graphite to PTFE can reduce the wear of the PTFE composites by two orders of magnitude compared to that of pure PTFE under dry friction conditions. However, the friction and wear‐reducing properties of these PTFE composites can be greatly improved by lubrication with liquid paraffin. Investigations of transfer films show that MoS2, PbS, CuS, and graphite promote the transfer of the PTFE composites onto the surface of GCr15‐bearing steel under dry friction conditions, but the transfer of the PTFE composites onto the surface of GCr15‐bearing steel can be greatly reduced by lubrication with liquid paraffin. SEM examinations of worn surfaces show that with lubrication of liquid paraffin, the creation and development of the cracks occurred on the worn surfaces of the PTFE composites under load, which reduces the load‐supporting capacity of the PTFE composites. This would lead to the deterioration of the friction and wear properties of the PTFE composites under higher loads (>600N). © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 751–761, 1999  相似文献   

9.
Ultrahigh‐molecular‐weight polyethylene (UHMWPE)/polar polyethylene (PE) composites were blended in one nascent particle by in situ polymerization with a hybrid catalyst. Polystyrene‐coated SiO2 particles were used to support the hybrid catalyst. Fe(acac)3/2,6‐bis[1‐(2‐isopropylanilinoethyl)] was supported on SiO2 for the synthesis of UHMWPE, whereas [PhN?C(CH3)CH?C(Ph)O]VCl2 was immobilized on a polystyrene layer to prepare a copolymer of ethylene and 10‐undecen‐1‐ol (polar PE). Importantly, the core part of the supports (the polystyrene layer) exhibited pronounced transfer resistance to 10‐undecen‐1‐ol; this provided an opportunity to keep the inside iron active sites away from the poisoning of 10‐undecen‐1‐ol. Therefore, UHMWPE was simultaneously synthesized with polar PE by in situ polymerization. Interestingly, the morphological results show that UHMWPE and the polar PE were successfully blended in one nascent polymer. This improved the miscibility of the composites, where most of the chains were difficult to crystallize because of the strong interactions between the PE chains and polar chains. The blends showed an extremely low crystallinity, that is, 9.9%. Finally, the hydrophilic properties of the polymer composites were examined. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46652.  相似文献   

10.
In this work, the response of different filler loading of zinc oxide (ZnO) reinforced ultra‐high‐molecular‐weight polyethylene (UHMWPE) on mechanical, abrasive wear, and antibacterial properties were studied. Two variants of untreated ZnO‐reinforced UHMWPE (U‐ZPE) and treated ZnO‐reinforced UHMWPE (T‐ZPE) with aminoproplytriethoxysilane (APTES) were used to compare the improvement of the mechanical, abrasive wear, and antibacterial properties. The abrasive wear and friction behaviors were monitored using a pin‐on‐disc (POD) test rig with different applied loads and sliding speeds against 400‐grit size of silicon carbide (SiC) abrasive paper under dry sliding conditions. The antibacterial assessments of the composites were tested against two common human body bacteria, that is, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Results have shown that T‐ZPE possess higher ultimate tensile strength and elongation at break values as compared to U‐ZPE. Furthermore, the T‐ZPE have higher wear resistance compared to U‐ZPE and pure UHMWPE. The average coefficient of friction (COF) of UHMWPE was not significantly affected by the addition of both untreated and treated ZnO filler. The wear mechanisms were studied under scanning electron microscopy (SEM). Both U‐ZPE and T‐ZPE composites showed active inhibition against E. coli and S. aureus bacteria. POLYM. COMPOS., 34:1020–1032, 2013. © 2013 Society of Plastics Engineers  相似文献   

11.
Lubricant‐treated ultra high molecular weight polyethylene (UHMWPE) composites were prepared by compression molding. Composites were made from mixtures containing up to 5.0 wt % of lubricant. Two solid lubricants, molybdenum disulfide (MoS2), and carbon black (CB), and one liquid lubricant, perfluoropolyether (PFPE), were used in the study. UHMWPE and the lubricants formed 3D networks, where the lubricant was evenly spread over the UHMWPE particles. The amounts of MoS2 and CB were determined by thermogravimetric analyses, and the amounts of PFPE by ATR‐IR spectroscopy. All the lubricant treated composites showed better friction properties than pure UHMWPE. The addition of PFPE to UHMWPE improved the hydrophobicity of the surface, whereas the addition of solid lubricant had little effect. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1762–1768, 2007  相似文献   

12.
Ultrahigh‐molecular‐weight polyethylene/copper (UHMWPE/Cu) composites compatibilized with polyethylene‐graft‐maleic anhydride (PE‐g‐MAH) were prepared by compression molding. The effects of the compatibilizer on the mechanical, thermal, and tribological properties of the UHMWPE/Cu composites were investigated. These properties of the composites were evaluated at various compositions, and worn steel surfaces and composite surfaces were examined with scanning electron microscopy and X‐ray photoelectron spectroscopy. The incorporation of PE‐g‐MAH reduced the melting points of the composites and increased their crystallinity to some extent. Moreover, the inclusion of the PE‐g‐MAH compatibilizer greatly increased the tensile rupture strength and tensile modulus of the composites, and this improved the wear resistance of the composites. These improvements in the mechanical and tribological behavior of the ultrahigh‐molecular‐weight‐polyethylene‐matrix composites with the PE‐g‐MAH compatibilizer could be closely related to the enhanced crosslinking function of the composites in the presence of the compatibilizer. Moreover, the compatibilizer had an effect on the transfer and oxidation behavior of the filler Cu particulates, which could be critical to the application of metallic‐particulate‐filled polymer composites in engineering. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 948–955, 2004  相似文献   

13.
Polydopamine (PDA) was employed to modify micrometric Al2O3 platelets to improve the interfacial compatibility between α‐Al2O3 powder and ultrahigh‐molecular‐weight polyethylene (UHMWPE). The structure of PDA‐coated Al2O3 and UHMWPE composites was investigated via Fourier transform infrared spectroscopy, scanning electron microscopy and X‐ray photoelectron spectroscopy. The thermal stability and mechanical performance of the samples were also evaluated. It is clear that UHMWPE/PDA‐Al2O3 composites exhibit better mechanical properties, higher thermal stability and higher thermal conductivity than UHMWPE/Al2O3 composites, owing to the good dispersion of Al2O3 powder in the UHMWPE matrix and the strong interfacial force between the macromolecules and the inorganic filler caused by the presence of PDA. The tensile strength and the tensile elongation at break of UHMWPE/PDA‐Al2O3 composite with 1 wt% PDA‐Al2O3 are 62.508 MPa and 462%, which are 1.96 and 1.98 times higher than those of pure UHMWPE, respectively. The thermal conductivity of UHMWPE/PDA‐Al2O3 composite increases from 0.38 to 0.52 W m?1 K?1 with an increase in the dosage of PDA‐Al2O3 to 20 wt%. The results show that the prepared PDA‐coated Al2O3 powder can simultaneously enhance the mechanical properties and thermal conductivity of UHMWPE. © 2018 Society of Chemical Industry  相似文献   

14.
《Polymer Composites》2017,38(8):1689-1697
The effects of hybrid filler of zinc oxide and chitosan (chitosan–ZnO) on thermal, flexural, antimicrobial, chemical resistance, and hardness properties of ultrahigh‐molecular‐weight polyethylene (UHMWPE) composites with varying concentration of zinc oxide (ZnO) and further hybridized by chitosan (CS) were successfully studied. The composites were prepared using mechanical ball milling and followed by hot compression molding. The addition of ZnO to the UHMWPE matrix had lowered the melting temperature (T m) of the composite but delayed its degradation temperature. Further investigation of dual filler incorporation was done by the addition of chitosan to the UHMWPE/ZnO composite and resulted in the reduction of UHMWPE crystallization. The flexural strength and modulus had a notably high improvement through ZnO addition up to 25 wt% as compared to neat UHMWPE. However, the addition of chitosan had resulted in lower flexural strength than that of 12 wt% ZnO UHMWPE composite but still higher than that of neat UHMWPE. It was experimentally proven that the incorporation of ZnO and chitosan particles within UHMWPE matrix had further enhanced the antimicrobial properties of neat UHMWPE. Chemical resistance was improved with higher ZnO content with a slight reduction of mass change after the incorporation of chitosan. The hardness value increased with ZnO addition but higher incorporation of chitosan had lowered the hardness value. These findings have significant implications for the commercial application of UHMWPE based products. It appears that these hybrid fillers (chitosan–ZnO)‐reinforced UHMWPE composites exhibit superior overall properties than that of conventional neat UHMWPE. POLYM. COMPOS., 38:1689–1697, 2017. © 2015 Society of Plastics Engineers  相似文献   

15.
Polyether‐block‐amide (Pebax)/graphene oxide (GO) mixed‐matrix membranes (MMMs) were prepared with a solution casting method, and their gas‐separation performance and mechanical properties were investigated. Compared with the pristine Pebax membrane, the crystallinity of the Pebax/GO MMMs showed a little increase. The incorporation of GO induced an increase in the elastic modulus, whereas the strain at break and tensile strength decreased. The apparent activation energies (Ep) of CO2, N2, H2, and CH4 permeation through the Pebax/GO MMMs increased because of the greater difficulty of polymer chain rotation. The Ep value of CO2 changed from 16.5 kJ/mol of the pristine Pebax to 23.7 kJ/mol of the Pebax/GO MMMs with 3.85 vol % GO. Because of the impermeable nature of GO, the gas permeabilities of the Pebax/GO MMMs decreased remarkably with increasing GO content, in particular for the larger gases. The CO2 permeability of the Pebax/GO MMMs with 3.85 vol % GO decreased by about 70% of that of the pristine Pebax membrane. Rather than the Maxwell model, the permeation properties of the Pebax/GO MMMs could be described successfully with the Lape model, which considered the influence of the geometrical shape and arrangement pattern of GO on the gas transport. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42624.  相似文献   

16.
Carbon fiber reinforced poly(urethane‐isocyanurate)‐nanosilica composites CF‐(PUI‐NS) were manufactured by means of the vacuum‐assisted resin transfer moulding technique (VARTM) at very low NS concentrations (0–4 wt%). The high strain to failure of the PUI matrix (>7%) affected tensile tests by CF reorientation. Both the tensile strength and strain to failure were highly dependent on its kinematics. CF(PUI‐NS) caused an increase of the static toughness with a maximum improvement of tensile strain to failure and modulus of +28.8% and +39% at 1 wt% and 2 wt% of NS, respectively. The interlaminar shear strength (GIC) of the composites showed both a deterioration of ?12.9% and an improvement of +9.9% for NS concentrations of 1 wt% and 4 wt%, respectively. Regardless of the GIC value, all of the composites prepared with NS presented secondary maxima of the force versus displacement plots, indicating a substantial arrest of the crack propagation velocity after delamination started. Fractographic analysis revealed several features, such as fiber pull‐out, bridging as well as river patterns whereas the composites prepared with NS behaved in a more ductile fashion due to the presence of river patterns and a reduced fiber pull‐out. POLYM. ENG. SCI., 58:1241–1250, 2018. © 2017 Society of Plastics Engineers  相似文献   

17.
In this article, the surface of SiO2 nanoparticles was modified by silane coupling agent N‐(2‐aminoethyl)‐γ‐aminopropylmethyl dimethoxy silane. The bismaleimide nanocomposites with surface‐modified SiO2 nanoparticles or unmodified SiO2 nanoparticles were prepared by the same casting method. The tribological performance of the nanocomposites was studied on an M‐200 friction and wear tester. The results indicated that the addition of SiO2 nanoparticles could decrease the frictional coefficient and the wear rate of the composites. The nanocomposites with surface‐modified SiO2 nanoparticles showed better wear resistance and lower frictional coefficient than that with the unmodified nanoparticles SiO2. The specific wear rate and the steady frictional coefficient of the composite with 1.0 wt % surface‐modified SiO2 nanoparticles are only 1.8 × 10?6 mm3/N m and 0.21, respectively. The dispersion of surface‐modified SiO2 nanoparticles in resin matrix was observed with transmission electron microscope, and the worn surfaces of pure resin matrix and the nanocomposites were observed with scanning electron microscope. The different tribological behavior of the resin matrix and the filled composites should be dependent on their different mechanical properties and wear mechanism. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
Cellulose–graphene oxide (GO) aerogel composites were successfully prepared from cellulose and GO dispersed in N‐methyl morpholine‐N‐oxide monohydrate, a nontoxic and environmentally friendly solvent, after a freeze‐drying process. Because of the strong interactions between the numerous oxygen‐containing groups located on the surface of GO and the functional groups of the cellulose molecules, the GO monolayers were well dispersed in the three‐dimensional porous structure of the cellulose aerogels. With the addition of 10 wt % GO, the swelling ratios and water contents of the composite cellulose–GO aerogels increased from 468 to 706% and from 82.4% to 87.6%, respectively. The corresponding maximum decomposition temperatures also increased from 335 to 353 °C with increasing GO content from 0 to 10%; this indicated that the thermal stability of the cellulose–GO aerogels was enhanced. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46152.  相似文献   

19.
20.
Simultaneous surface functionalization and reduction of graphene oxide (GO) was achieved by using dodecyl amine (DA) as surface modifying agent. The DA modified reduced GO (DA‐G) was used for subsequent preparation of DA‐G/epoxy composites by solution mixing. Fourier transform infrared spectroscopy analysis, X‐ray diffraction (XRD) and electrical conductivity measurements were conducted to establish the concurrent functionalization and reduction of GO. The effect of DA‐G on the epoxy composites at 0 to 0.75 wt% loadings was studied by investigating its static and dynamical mechanical properties. XRD study was performed to verify the dispersion of DA‐G in the epoxy polymer. Field emission scanning electron microscopy was used to investigate the fracture surface morphology of the composites and Transmission electron microscopy was employed to further confirm the dispersion of DA‐G in the matrix. It was found that the tensile strength of the composite was increased by 38.8% with the addition of 0.5 wt% of DA‐G. The good adhesion/interaction between DA‐G and epoxy resulted in the increase of storage modulus; however, glass transition temperature (Tg) value of the composites shifted to lower temperature in comparison to the neat epoxy. Thermogravimetric analysis showed small decrease in onset degradation temperature for the composites as compared to neat epoxy except for the composites containing 0.75 wt% of DA‐G. POLYM. ENG. SCI., 56:1221–1228, 2016. © 2016 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号