首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epoxy resins based on 4,4′-dihydroxydiphenylsulfone (DGEBS) and diglycidyl ether of bisphenol A (DGEBA) were prepared by alkaline condensation of 4,4′-dihydroxydiphenylsulfone (bisphenol S) with epichlorohydrin and by recrystallization of liquid, commercial bisphenol A-type epoxy resin, respectively. Curing kinetics of the two epoxy compounds with 4,4′-diaminodiphenylmethane (DDM) and with 4,4′-diaminodiphenylsulfone (DDS) as well as Tg values of the cured materials were determined by the DSC method. It was found that the ? SO2? group both in the epoxy resin and in the harener increases Tg values of the cured materials. DGEBS reacts with the used hardeners faster than does DGEBA and the curing reaction of DGEBS begins at lower temperature than does the curing reaction of DGEBA when the same amine is used. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
A novel nitrogen‐containing cyclic phosphate (NDP) was synthesized and well characterized by 1H, 13C, 31P NMR, mass spectra and elemental analysis. NDP was used as an additive intumescent flame retardant (AIFR) to impart flame retardancy and dripping resistance for diglycidyl ether of bisphenol‐A epoxy resin (DGEBA) curied by 4,4′‐diaminodiphenylsulfone (DDS) with different phosphorus content. The flammability, thermal stability, and mechanical properties of NDP modified DGEBA/DDS thermosets were investigated by UL‐94 vertical burning test, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Izod impact strength and flexural property tests. The results showed that NDP modified DGEBA/DDS thermosets exhibited excellent flame retardancy, moderate changes in glass transition temperature and thermal stability. When the phosphorus content reached only 1.5 wt %, the NDP modified DGEBA/DDS thermoset could result in satisfied flame retardancy (UL‐94, V‐0). The TGA curves under nitrogen and air atmosphere suggested that NDP had good ability of char formation, and there existed a distinct synergistic effect between phosphorus and nitrogen. The flame retardant mechanism was further realized by studying the structure and morphology of char residues using FT‐IR and scanning electron microscopy (SEM). It indicated that NDP as phosphorus‐nitrogen containing flame retardant worked by both of the condensed phase action and the vapor phase action. Additionally, the addition of NDP decreased slightly the flexural strength of the flame retarded DGEBA epoxy resins, and increased the Izod impact strength of these thermosets. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41859.  相似文献   

3.
A novel adamantane‐containing epoxy resin diglycidyl ether of bisphenol‐adamantane (DGEBAda) was successfully synthesized from 1,3‐bis(4‐hydroxyphenyl)adamantane by a one‐step method. The proposed structure of the epoxy resin was confirmed with Fourier transform infrared, 1H‐NMR, gel permeation chromatography, and epoxy equivalent weight titration. The synthesized adamantane‐containing epoxy resin was cured with 4,4′‐diaminodiphenyl sulfone (DDS) and dicyandiamide (DICY). The thermal properties of the DDS‐cured epoxy were investigated with differential scanning calorimetry and thermogravimetric analysis (TGA). The dielectric properties of the DICY‐cured epoxy were determined from its dielectric spectrum. The obtained results were compared with those of commercially available diglycidyl ether of bisphenol A (DGEBA), a tetramethyl biphenol (TMBP)/epoxy system, and some other associated epoxy resins. According to the measured values, the glass‐transition temperature of the DGEBAda/DDS system (223°C) was higher than that of the DGEBA/DDS system and close to that of the TMBP/DDS system. TGA results showed that the DGEBAda/DDS system had a higher char yield (25.02%) and integral procedure decomposition temperature (850.7°C); however, the 5 wt % degradation temperature was lower than that of DDS‐cured DGEBA and TMBP. Moreover, DGEBAda/DDS had reduced moisture absorption and lower dielectric properties. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

4.
Liquid oxidized poly(1,2‐butadiene) (LOPB) with multi epoxy groups is synthesized to modify diglycidyl end‐caped poly(bisphenol A‐co‐epichlorohydrin) (DGEBA) cured by 4,4′‐diaminodiphenyl sulfone (DDS). FTIR spectra shows that DGEBA and LOPB can be effectively cured by DDS, and the epoxide rubber particles are evenly distributed in the composites till their addition up to 20 wt % of DGEBA as seen from the scanning electron microscope (SEM). Their decomposition temperatures (Td) increase with the increase in LOPB addition at around 10 wt % of DGEBA while the Td for the composite containing 20 wt % LOPB of DGEBA is lower than that of the neat epoxy. The addition of LOPB improves their storage moduli and especially these values at temperatures higher above 150 °C; all the composites exhibit higher glass transition temperature (Tg) than that of the neat epoxy, and the maximum Tg reaches up to 255 °C for the composite containing 15 wt % LOPB of DGEBA. The incorporation of LOPB effectively decreases their dielectric constants and the composite with 10 wt % LOPB of DGEBA possesses the lowest one. The synergic improvements in their various properties are attributed to the networks formation via covalent linkage between the two phases in these reactive blends. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44689.  相似文献   

5.
A novel, halogen‐free, phosphorus–nitrogen containing flame retardant 2[4‐(2,4,6‐Tris{4‐[(5,5‐dimethyl‐2‐oxo‐2λ5‐[1,3,2]dioxaphosphinan‐2‐yl)hydroxymethyl]phenoxy}‐(1,3,5)‐triazine (TNTP) was successfully synthesized in a three‐step process, and characterized by FTIR, NMR spectroscopy, mass spectra, and elemental analysis. A series of modified DGEBA epoxy resin with different loadings of TNTP were prepared and cured by 4,4‐diaminodiphenylsulfone (DDS). Thermal gravimetric analysis and vertical burning test (UL‐94) were used to evaluate the flame retardancy of TNTP on DGEBA epoxy resin. The results showed that TNTP had a great impact on flame retardancy. All modified thermosets by using TNTP exhibited higher Tg than pure DGEBA/DDS. The loading of TNTP at only 5.0 wt % could result in satisfied flame retardancy (UL‐94, V‐0) together with high char residue (27.3%) at 700°C. The addition of TNTP could dramatically enhance the flame retardancy of DGEBA epoxy resins, which was further confirmed by the analysis of the char residues by scanning electron microscopy and FTIR. Furthermore, no obviously negative effect was found on the Izod impact strength and flexural property of DGEBA epoxy resins when TNTP loading limited in 5.0 wt %. DGEBA/DDS containing 2.5 wt % TNTP could enhance Izod impact strength from 10.47 to 10.94 kJ m?2, and showed no appreciable effect on the flexural property (85.20 MPa) comparing with pure DGEBA/DDS (87.03 MPa). Results indicated that TNTP as a phosphorus–nitrogen synergistic intumescent flame retardant could be used for DGEBA epoxy resin. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41079.  相似文献   

6.
Nanoreinforcing fillers have shown outstanding mechanical properties and widely used as reinforcing materials associated to polymeric matrices for high performance applications. In this study, a series of multiwalled carbon nanotubes (MWCNTs)‐, nano‐Al2O3‐, nano‐SiO2‐, and talc‐reinforced epoxy resin adhesives composites were developed. The influence of different types and contents of nanofillers on adhesion, elongation at break, and thermal stability (under air and nitrogen atmospheres) of diglycidyl ether of bisphenol A (DGEBA)/epoxy novolac adhesives was investigated. A simple and effective approach to prepare adhesives with uniform and suitable dispersion of nanofillers into epoxy matrix was found to be mechanical stirring combined with ultrasonication. Transmission electron microscopic and scanning electron microscopic investigations revealed that nanofillers were homogeneously dispersed in epoxy matrix at optimized nanofiller loadings. Adhesion strength was measured by lap shear strength test as a function of nano‐Al2O3 and MWCNTs loadings. The results indicated that the lap shear strength was significantly increased by about 50% and 70% with addition of MWCNTs and nano‐Al2O3 up to a certain level, respectively. The highest lap shear strength was reached at 1.5 wt % of nano‐Al2O3 loading. MWCNTs at all loadings (except 3 wt %) and nano‐Al2O3 have enhanced onset of degradation temperature and char yield of the adhesives. By combined incorporation of 0.75 wt % nano‐Al2O3 and 0.75 wt % MWCNTs into the epoxy novolac/DGEBA blend adhesives a synergistic effect was observed in the thermal stability of the adhesives at high temperatures (800°C). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40017.  相似文献   

7.
The curing behaviour, chemorheology, morphology and dynamic mechanical properties of epoxy ? polyphenylene oxide (PPO) blends were investigated over a wide range of compositions. Two bisphenol A based di‐epoxides ? pure and oligomeric DGEBA ? were used and their cure with primary, tertiary and quaternary amines was studied. 4,4′‐methylenebis(3‐chloro‐2,6‐diethylaniline) (MCDEA) showed high levels of cure and gave the highest exotherm peak temperature, and so was chosen for blending studies. Similarly pure DGEBA was selected for blending due to its slower reaction rate because of the absence of accelerating hydroxyl groups. For the PPO:DGEBA340/MCDEA system, the reaction rate was reduced with increasing PPO content due to a dilution effect but the heat of reaction were not significantly affected. The rheological behaviour during cure indicated that phase separation occurred prior to gelation, followed by vitrification. The times for phase separation, gelation and vitrification increased with higher PPO levels due to a reduction in the rate of polymerization. Dynamic mechanical thermal analysis of PPO:DGEBA340/MCDEA clearly showed two glass transitions due to the presence of phase separated regions where the lower Tg corresponded to an epoxy‐rich phase and the higher Tg represented the PPO‐rich phase. SEM observations of the cured PPO:DGEBA340/MCDEA blends revealed PPO particles in an epoxy matrix for blends with 10 wt% PPO, co‐continuous morphology for the blend with 30 wt% PPO and epoxy‐rich particles dispersed in a PPO‐rich matrix for 40wt% and more PPO. © 2014 Society of Chemical Industry  相似文献   

8.
Non‐amine‐derived tetrafunctional epoxies have several advantages over the amine‐derived N,N,N′,N′‐tetraglycidyl‐4,4′‐diaminodiphenyl methane (TGDDM) in high temperature applications. Although two non‐amine‐derived tetrafunctional epoxies were developed in our laboratory, further improvements in toughness using less loading amount is still desirable. Thus, a tertiary‐amine‐free, non‐planar and triphenylmethane‐containing tetrafunctional epoxy (STFE) with a sulfone spacer was synthesized. When it was mixed with diglycidyl ether of bisphenol A (DGEBA) and cured with 4,4′‐diaminodiphenylsulfone (DDS), both thermal and mechanical performances outperformed TGDDM. Moreover, STFE modified system shows the highest toughness (35.7 kJ m–2) among three amine‐free and triphenylmethane‐containing epoxies at merely 5 wt% loading. Molecular simulation and thermomechanical analysis results suggest that the improved mechanical properties could be related to the geometry of the molecule and larger free volume. Despite a marginal drop in Tg, the thermal degradation temperature is better than that of TGDDM/DDS. In addition, the moisture resistance of STFE/DGEBA/DDS is much better than that of TGDDM/DDS. Thus, STFE modified DGEBA could be a potential replacement for TGDDM in some high temperature applications. © 2020 Society of Chemical Industry  相似文献   

9.
Amino‐functionalized multiwalled carbon nanotubes (MWCNT‐NH2s) as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA) toughened with amine‐terminated butadiene–acrylonitrile (ATBN). The curing kinetics, glass‐transition temperature (Tg), thermal stability, mechanical properties, and morphology of DGEBA/ATBN/MWCNT‐NH2 nanocomposites were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis, a universal test machine, and scanning electron microscopy. DSC dynamic kinetic studies showed that the addition of MWCNT‐NH2s accelerated the curing reaction of the ATBN‐toughened epoxy resin. DSC results revealed that the Tg of the rubber‐toughened epoxy nanocomposites decreased nearly 10°C with 2 wt % MWCNT‐NH2s. The thermogravimetric results show that the addition of MWCNT‐NH2s enhanced the thermal stability of the ATBN‐toughened epoxy resin. The tensile strength, flexural strength, and flexural modulus of the DGEBA/ATBN/MWCNT‐NH2 nanocomposites increased increasing MWCNT‐NH2 contents, whereas the addition of the MWCNT‐NH2s slightly decreased the elongation at break of the rubber‐toughened epoxy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40472.  相似文献   

10.
The poly(sily ether) with pendant chloromethyl groups (PSE) was synthesized by the polyaddition of dichloromethylsilane (DCM) and diglycidylether of bisphenol A (DGEBA) with tetrabutylammonium chloride (TBAC) as a catalyst. This polymer was miscible with diglycidyl ether of bisphenol A (DGEBA), the precursor of epoxy resin. The miscibility is considered to be due mainly to entropy contribution because the molecular weight of DGEBA is quite low. The blends of epoxy resin with PSE were prepared through in situ curing reaction of diglycidyl ether of bisphenol A (DGEBA) and 4,4′‐diaminodiphenylmethane (DDM) in the presence of PSE. The DDM‐cured epoxy resin/PSE blends with PSE content up to 40 wt % were obtained. The reaction started from the initial homogeneous ternary mixture of DGEBA/DDM/PSE. With curing proceeding, phase separation induced by polymerization occurred. PSE was immiscible with the 4,4′‐diaminodiphenylmethane‐cured epoxy resin (ER) because the blends exhibited two separate glass transition temperatures (Tgs) as revealed by the means of differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). SEM showed that all the ER/PSE blends are heterogeneous. Depending on blend composition, the blends can display PSE‐ or epoxy‐dispersed morphologies, respectively. The mechanical test showed that the DDM‐cured ER/PSE blend containing 25 wt % PSE displayed a substantial improvement in Izod impact strength, i.e., epoxy resin was significantly toughened. The improvement in impact toughness corresponded to the formation of PSE‐dispersed phase structure. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 505–512, 2003  相似文献   

11.
In this study, bisphenol A epoxy resin (DGEBA) was chemically modified by 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO), and the molecular structure of the modified epoxy resin was characterized by Fourier transform infrared spectra. The effects of DOPO on liquid oxygen compatibility of DGEBA were calculated using mechanical impact method. The results indicated that epoxy resin (EP‐P1)/4,4‐diaminobisphenol sulfone (DDS) was compatible with liquid oxygen. When compared with EP/DDS, differential scanning calorimetry and thermogravimetry analyses showed that EP‐P1/DDS and EP‐P2/DDS had much higher glass transition temperatures and char yield. X‐ray photoelectron spectroscopic analysis suggested that phosphorus atoms on the surface of EP‐P1/DDS and EP‐P2/DDS could act in the solid phase to restrain the incompatible reaction, which was in accordance with the flame‐retardant mechanism of phosphorus‐containing compounds. The compatibility mechanism of EP‐P1/DDS was further proposed. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40848.  相似文献   

12.
A series of epoxy resin–modified polyisocyanurate (EP‐PIR) foams with oxazolidone (OX) rings and isocyanurate (IS) rings have been successfully prepared by the reaction of polymethylene polyphenyl isocyanate (PAPI) and diglycidyl ether of bisphenol‐A (DGEBA). Fourier transform infrared spectroscopy and differential scanning calorimetry are performed to investigate the influence of curing temperature on the chemical structure of EP‐PIR foams. The results indicate that low temperature is beneficial to the formation of the IS ring, and high temperature is in favor of the OX ring. The influence of the mole ratio of [PAPI]/[DGEBA] on the mechanical properties and thermal stability has also been studied. With the increase of [PAPI]/[DGEBA], the specific compressive strength shows a maximum of 0.0135 ± 0.0003 MPa m3/kg. The optimized mole ratio of [PAPI]/[DGEBA] is around 2.5 to reach the better mechanical and thermal properties, and the glass‐transition temperature is as high as 323.5°C. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43085.  相似文献   

13.
Stoichiometric mixtures of DGEBA (diglycidyl ether of bisphenol A)/DDS (diaminodiphenyl sulfone) and DGEBA/mPDA (meta phenylene diamine) have been isothermally cured by electromagnetic radiation and conventional heating using thin film sample configurations. Fourier transform infrared spectroscopy (FTIR) was used to measure the extent of cure. Thermal mechanical analysis (TMA) was used to determine the glass transition temperatures directly from the cured thin film samples. Well-defined glass transitions were observed in the TMA thermograph for both thermal and microwave cured samples. Significant increases in the reaction rates have been observed in the microwave cured DGEBA/DDS samples. Only slight increases in the reaction rates have been observed in the microwave cured DGEBA/mPDA samples. Higher glass transition temperatures were obtained in microwave cured samples compared to those of thermally cured ones after gelation. The magnitude of increases of glass transition temperature is much larger for the DGEBA/DDS system than DGEBA/mPDA system. The microwave radiation effect was much more significant in DGEBA/DDS system than in DGEBA/mPDA system. DiBenedetto's model was used to fit the experimental Tg data of both thermal and microwave cured epoxy resins.  相似文献   

14.
An organophosphorus epoxy resin with diglycidyl ether of bisphenol A (DGEBA), which has improved fire performance, was synthesized from the reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide and DGEBA. The epoxy resin was then cured with an isomeric mixture of 3,5‐diethyltoluene‐2,4‐diamine and 3,5‐diethyltoluene‐2,6‐diamine. The reaction kinetics were measured by Fourier transform IR, 1H‐NMR, and differential scanning calorimetry. The effect of the incorporation of a phosphorus species into the epoxy network structures was also measured using thermogravimetric, thermal conductivity, and dynamic mechanical thermal analyses. The fire performance was measured using cone calorimetry, which showed that a significant improvement was achieved by the addition of only 1–4% phosphorus into the epoxy backbone. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3696–3707, 2003  相似文献   

15.
Guoyuan Pan  Chen Zhang  Xiaoping Yang 《Polymer》2007,48(13):3686-3693
A series of novel novolac epoxy resins containing naphthalene moiety with different molecular weights were synthesized via condensation of bisphenol A and 1-naphthaldehyde, followed by epoxidation with epichlorohydrin. The chemical structure of the naphthalene epoxy thus obtained was characterized using FTIR, 1H NMR spectra and GPC analyses. The naphthalene epoxy was cured with 4,4′-diaminodiphenyl sulfone (DDS) and the cured products were characterized with thermogravimetric analysis, dynamic mechanical analysis, and X-ray diffraction. Compared with the diglycidyl ether of bisphenol A (DGEBA), the cured naphthalene epoxy resin showed remarkably higher glass transition temperatures (Tgs), enhanced thermal stability and better moisture resistance. When the molar ratio of 1-naphthaldehyde to bisphenol A was 0.67, the optimal thermal resistance was observed.  相似文献   

16.
A series of intercrosslinked networks formed by diglycidyl ether of bisphenol A epoxy resin (DGEBA) and novel bismaleimide containing phthalide cardo structure (BMIPP), with 4,4′‐diamino diphenyl sulfone (DDS) as hardener, have been investigated in detail. The curing behavior, thermal, mechanical and physical properties and compatibility of the blends were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), notched Izod impact test, scanning electron microscopy (SEM) and water absorption test. DSC investigations showed that the exothermic transition temperature (Tp) of the blend systems shifted slightly to the higher temperature with increasing BMIPP content and there appeared a shoulder on the high‐temperature side of the exothermic peak when BMIPP content was above 15 wt %. TGA and DMA results indicated that the introduction of BMIPP into epoxy resin improved the thermal stability and the storage modulus (G′) in the glassy region while glass transition temperature (Tg) decreased. Compared with the unmodified epoxy resin, there was a moderate increase in the fracture toughness for modified resins and the blend containing 5 wt % of BMIPP had the maximum of impact strength. SEM suggested the formation of homogeneous networks and rougher fracture surface with an increase in BMIPP content. In addition, the equilibrium water uptake of the modified resins was reduced as BMIPP content increased. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Epoxy syntactic foams were prepared with diglycidyl ether of bisphenol‐A (DGEBA) epoxy resin, 2.4.6‐tri(dimethylaminomethyl)phenol (DMP‐30), coupling treated microsphere and short carbon fiber. The density of the foam was maintained between 0.56 and 0.91 g/cm3 for all compositions. Compressive, flexural, tensile and dynamic mechanical properties of the foams were investigated with respect to hollow glass microsphere (HGM) and carbon fiber (CF) content. A considerable improvement in the mechanical properties viz. compressive, flexural and tensile strengths was observed for the foams on incorporation of a small quantity of CF. The storage modulus were higher for the foam composites containing CF. The presence of HGM has significant influence on Tg of the syntactic foams, spherical filler diminished the Tg of the syntactic foams due to the plasticizing effect of the coupling treatment of HGM, that is helpful for enhancing damping properties of syntactic foams. POLYM. COMPOS., 37:1960–1970, 2016. © 2015 Society of Plastics Engineers  相似文献   

18.
Mixtures of diglycidyl ether of bisphenol‐A (DGEBA) epoxy resin with poly(4‐vinyl phenol) (PVPh) of various compositions were examined with a differential scanning calorimeter (DSC), using the curing agent 4,4′‐diaminodiphenylsulfone (DDS). The phase morphology of the cured epoxy blends and their curing mechanisms depended on the reactive additive, PVPh. Cured epoxy/PVPh blends exhibited network homogeneity based on a single glass transition temperature (Tg) over the whole composition range. Additionally, the morphology of these cured PVPh/epoxy blends exhibited a homogeneous network when observed by optical microscopy. Furthermore, the DDS‐cure of the epoxy blends with PVPh exhibited an autocatalytic mechanism. This was similar to the neat epoxy system, but the reaction rate of the epoxy/polymer blends exceeded that of neat epoxy. These results are mainly attributable to the chemical reactions between the epoxy and PVPh, and the regular reactions between DDS and epoxy. Polym. Eng. Sci. 45:1–10, 2005. © 2004 Society of Plastics Engineers.  相似文献   

19.
In the present work it is shown that low nanoparticle‐loaded polymer composites with improved mechanical performance can be prepared by a conventional melt blending technique in which the nanoparticles are chemically pregrafted by diglycidyl ether of bisphenol‐A (DGEBA). Two composites, each with 2.5 wt% filler, were developed. The first one was obtained by melt blending propylene‐ethylene copolymer (EP) with nanosilica in a co‐rotating sigma internal mixer. The second one was obtained by melt blending the same EP, but with DGEBA grafted nanosilica. The addition of epoxy resin grafted nanosilica to the polymer matrix produced a homogeneous dispersion of particles in the form of micro domains. The results of tensile tests indicate that epoxy resin grafted nanosilica particles (SiO2‐g‐DGEBA) provide EP with stiffening, strengthening, and toughening effects at a 2.5 wt% loading level. This is a much lower level compared to most particulate fillers used for composites. There was no noticeable improvement in the mechanical properties when nanosilica was added to the neat polymer. However, the addition of SiO2‐g‐DGEBA particles to the polymer matrix led to an increase of both elastic modulus and toughness (from 0.36 to 0.54 GPa, and 19.06 to 21.05 MJ/m3, respectively). POLYM. ENG. SCI., 26:806–812, 2005. © 2005 Society of Plastics Engineers  相似文献   

20.
A novel polyhedral oligomeric silsesquioxane (POSS) containing a mercaptopropyl group [mercaptopropyl polyhedral oligomeric silsesquioxane (MPOSS)] was synthesized via the hydrolytic condensation of γ-mercaptopropyl triethoxysilane in an ethanol solution catalyzed by concentrated hydrochloric acid and was used to modify epoxy–amine networks by a cocuring reaction with diglycidyl ether of bisphenol A (DGEBA). The structure, morphology, and thermal and mechanical properties of these MPOSS/DGEBA epoxy nanocomposites were studied and investigated with thermogravimetric analysis/differential thermal analysis (TGA–DTA), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). From SEM analysis, we observed that the miscibility between epoxy and POSS occurred at a relatively high POSS content, which characterized this mixture as a polymer nanocomposite system. The impact test showed that MPOSS reinforced the epoxy effectively, and the SEM study of the impact fracture surface showed that the fibrous yielding phenomenon observed was an indication of the transition of the brittle stage to a ductile stage and correlated well with the large increases in the impact strength; this was in agreement with the in situ reinforcing and toughening mechanism. The TGA–DTA analysis indicated that the MPOSS/DGEBA epoxy hybrids exhibited lower thermostability at a lower temperature but higher thermostability and higher efficiency in char formation at an elevated temperature. Differential scanning calorimetry showed that the glass transition temperature (Tg) of the MPOSS/epoxy hybrids were lower than that of the neat epoxy. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号