首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
通过对重整装置轻石脑油进行异构化,可以提高产品的辛烷值,减少汽油池高辛烷值油品用量,进而提高石脑油产品的竞争力。  相似文献   

2.
轻质烷烃异构化技术是满足汽油质量升级要求的重要工艺路线。以某炼厂异构化固定床反应装置为研究对象,将异构化汽油划分为10个集总并建立反应网路,同时以实际生产数据为基础进行了动力学参数计算,并建立了HYSYS平推流速率反应器的稳态模型。利用此模型对异构化装置关键操作参数与产品性质的平衡关系进行灵敏度分析,为异构化反应器操作调整提供科学的理论指导。并制定了装置优化方案,即继续采用一次通过流程,调节反应器运行温度至130.4℃后与重整油按比例调和后去下游装置,或通过稳定分离单元将部分低辛烷值单甲基戊烷循环至反应器,提高后续异构化汽油辛烷值。  相似文献   

3.
催化重整装置的主要目的是通过脱氢芳构化或异构化等反应,将低辛烷值的组分转化成高辛烷值的组分,并副产氢气。除了选择合理的反应条件和高效的催化剂之外,对原料组成的合理控制和优化,也是重整装置提高目标产品收率的有效手段。针对中石化洛阳分公司0.7 Mt/a连续重整装置的运行状况,利用KBC公司Petro-SIM流程模拟软件对装置进行模拟测算,并结合装置生产实际,从原料性质方面提出优化措施,以提高装置芳烃产率、纯氢产率等技术指标及经济效益。  相似文献   

4.
长庆石化公司60万吨/年连续重整装置设计C4/C5分离塔,降低重整汽油饱和蒸汽压,提高汽油辛烷值,降低成品汽油挥发损失和发车损失,提高液化气产量,降低苯抽提加工负荷,提高了公司的经济效益。  相似文献   

5.
介绍了国外某炼厂C5/C6低温异构化装置的工艺技术特点及开工物料标定状况,本套异构化装置的成功运行,将原料辛烷值提高十几个单位,满足了炼厂生产欧IV、欧V标准的汽油的要求,对于炼厂的生产发展、提高炼厂效益具有十分重要的意义。  相似文献   

6.
介绍国内首套40万t·a-1 C5/C6低温异构化装置的工艺技术特点及标定情况。首套引进C5/C6低温异构化装置成功运行,使反应产物辛烷值提高15个单位,对汽油质量升级具有重要意义。  相似文献   

7.
1930~1931年间,热重整过程在工业上得到实现。和四乙基铅的应用相结合,它使当时的汽油辛烷值提高到了60左右的水平。催化重整过程的诞生,以及叠合、烃化、异构化等高辛烷值组分生产过程的出现,使热重整过程遇到了劲敌。热重整的气体产率高(可达30%)这一事实也给它带来了不利的影响。这都使热重整过程的发展受到了严重的阻碍。1936~1949年苏联的若干个炼油厂也曾建造了热重整装置;但不久就改作别的用途了。  相似文献   

8.
为了达到环保要求,使用无铅、低芳烃、低蒸气压、高辛烷值和高氧含量的汽油,降低大气污染是大势所趋。通过C5/C6烷烃异构化生产高辛烷值组分异构化油,改善汽油组成,提高汽油辛烷值的研究和生产工艺得到迅速发展。本文介绍了C5/C6异构化催化反应机理,对国内外C5/C6异构化催化剂研究进行了综述。  相似文献   

9.
针对永坪炼油厂140万吨/年加氢装置开工后加氢粗汽油销售价格偏低,加之加氢粗汽油储运过程存在安全隐患这一实际问题,经过不断摸索试验,将加氢粗汽油按一定比例掺炼在15万吨/年催化重整装置进行试生产,提高重整稳定汽油辛烷值。结果表明,重整装置掺炼加氢粗汽油后重整汽油辛烷值提高1个单位,全厂汽油辛烷值整体提高0.2个单位,经济效益增加明显。  相似文献   

10.
李劭  王昊  王曼曼 《当代化工》2014,(5):858-862
C5/C6烷烃异构化技术可以使轻石脑油的辛烷值提高约20个单位,其产品异构化油是一种高辛烷值且环境友好的汽油调和组份。国外的C5/C6异构化技术主要有UOP的Penex、Axens的Isomerization等。国内的技术有石科院的RISO和华东理工大学的技术等。通过对国内外的主要C5/C6异构化技术进行对比分析,为国内的异构化技术发展提出建议。  相似文献   

11.
MOLECULAR MODELING AND OPTIMIZATION FOR CATALYTIC REFORMING   总被引:2,自引:0,他引:2  
In this paper, molecular modeling and optimization for the naphtha catalytic reforming process is studied. The catalytic reforming process is for producing high octane number gasoline by reforming reactions in three sequencing fixed bed reactors. Feed naphtha coming from an atmospheric distillation unit consisted of molecules from C5 to C10 including paraffin, iso-paraffin, naphthene, and aromatic. The molecular reaction network consisted of paraffin cracking, naphthene side-chain cracking, aromatic side-chain cracking, ring opening, ring closure, paraffin isomerization, dehydrogenation, and hydrogenation. A molecular model for catalytic reforming was built. On the basis of the simulation model, a process optimization was performed for feed temperature and pressure under constraints such as benzene content, aromatic content, and RON (Research Octane Number) limitations. High RON was contrasted to low benzene and aromatic content requirements. By optimizing and controlling the reaction pathway, we can obtain a final product with the highest profit and appropriate benzene and aromatic contents and RON value. This example shows significant benefits from applying molecular modeling to optimization in the process level. Since gasoline production is related to many different processes such as reforming, FCC, isomerization, alkylation, and so on, more benefits can be obtained by applying molecular modeling to plant-wide optimization.  相似文献   

12.
In this paper, molecular modeling and optimization for the naphtha catalytic reforming process is studied. The catalytic reforming process is for producing high octane number gasoline by reforming reactions in three sequencing fixed bed reactors. Feed naphtha coming from an atmospheric distillation unit consisted of molecules from C5 to C10 including paraffin, iso-paraffin, naphthene, and aromatic. The molecular reaction network consisted of paraffin cracking, naphthene side-chain cracking, aromatic side-chain cracking, ring opening, ring closure, paraffin isomerization, dehydrogenation, and hydrogenation. A molecular model for catalytic reforming was built. On the basis of the simulation model, a process optimization was performed for feed temperature and pressure under constraints such as benzene content, aromatic content, and RON (Research Octane Number) limitations. High RON was contrasted to low benzene and aromatic content requirements. By optimizing and controlling the reaction pathway, we can obtain a final product with the highest profit and appropriate benzene and aromatic contents and RON value. This example shows significant benefits from applying molecular modeling to optimization in the process level. Since gasoline production is related to many different processes such as reforming, FCC, isomerization, alkylation, and so on, more benefits can be obtained by applying molecular modeling to plant-wide optimization.  相似文献   

13.
介绍了具有代表性的选择性和结合辛烷值恢复的催化裂化(FCC)汽油精制脱硫加氢工艺。而加氢工艺中的结合辛烷值恢复的加氢工艺更适合我国国情,并提出以辛烷值恢复技术中的异构化和芳构化为主线.研制脱硫能力强和辛烷值保持能力高的脱硫催化剂.适度增强催化剂的酸位疏通孔道,提高其芳构化活性及稳定性。针对反应吸附脱硫工艺,通过寻找硫容量高、吸附性能强的新材料、深度研究脱硫反应机理、简化工艺流程来开展脱硫效果更好、汽油辛烷值维持高的反应吸附脱硫工艺。  相似文献   

14.
PS-VI重整催化剂的工业应用试验   总被引:5,自引:0,他引:5  
PS-VI型催化剂在天津石化80万吨/年连续重整装置上工业应用成功,使用PS-VI型催化剂,重整产品液收率、重整生成油辛烷值,纯氢产率及芳烃产率均达到协议的要求,达到了重整装置扩产改造的目的;PS-VI催化剂具有高活性、选择性和稳定性,与使用PS-IV催化剂进行比较,发现使用PS-VI催化剂时,空速由1.00提高到1.44,氢烃比由2.8下降到1.9,同时PS-VI催化剂持氯能力更强,产生粉尘量更低。  相似文献   

15.
罗世浩 《当代化工》2011,40(6):571-573
阐述格尔木炼油厂催化裂化装置针对本厂催化汽油辛烷值偏低、产品分布不合理等几个问题,通过对几种催化剂型号的试用,对其产品分布以及催化汽油辛烷值等综合收益进行对比后,改良催化剂选型,提高催化汽油辛烷值,并获得更好的产品分布,增大了企业效益。  相似文献   

16.
本文介绍了多产柴油催化剂CC-20D与高效助辛并增产液化气助剂CA-100在克拉玛依石化厂重催装置上的混合应用情况。结果表明CC-20D具有增产柴油效果明显。抗污染能力强。产品选择性好等优点;CA-100提高辛烷值和增产液化气能力强。使用CC-20D并配合使用3%的CA-100时,柴油产率提高3.27wt%,液化气提高1.9wt%,总液收提高1.81wt%,汽油RON提高1.7,MON提高0.8,创造了较好的经济效益。  相似文献   

17.
Three process flowsheets combining the processes of catalytic reforming, interstage separation, and reformate hydroisomerization are considered to improve the yield and quality of reformate (i.e., reduce the content of aromatics, including benzene). It is shown that the process flowsheet with the distillation of the intermediate reformate into three fractions (IBP-85°C, 85–150°C, and EBP-150°C) is the best one, since it allows the production of high-octane gasoline compounds with a reduced benzene content (less than 1 wt %) at an appreciable increase in the yield of reformate (up to 4–5 wt %) and its research octane number (RON) (up to 2), in comparison to traditional (fixed-bed) catalytic reforming. Effective catalysts are selected for the reforming and reformate hydroisomerization stages and are used to perform experimental modeling of the considered flowsheets for the combined reforming–hydroisomerization process. The results confirm analytical estimates for the effectiveness of the developed technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号