首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of PAR-1 expression and activation was described in epithelial cells from the central and distal airways of COPD patients using an ex vivo/in vitro model. PAR-1 immunoreactivity was studied in epithelial cells from surgical specimens of the central and distal airways of COPD patients and healthy control (HC). Furthermore, PAR-1 expression and activation were measured in both the human bronchial epithelial cell line (16HBE) and normal human bronchial epithelial cells (NHBEs) exposed to cigarette smoke extract (CSE) (10%) or thrombin. Finally, cell proliferation, apoptosis, and IL-8 release were detected in stimulated NHBEs. We identified higher levels of PAR-1 expression/activation in epithelial cells from the central airways of COPD patients than in HC. Active PAR-1 increased in epithelial cells from central and distal airways of COPD, with higher levels in COPD smokers (correlated with pack-years) than in COPD ex-smokers. 16HBE and NHBEs exposed to CSE or thrombin showed increased levels of active PAR-1 (localized in the cytoplasm) than baseline conditions, while NHBEs treated with thrombin or CSE showed increased levels of IL-8 proteins, with an additional effect when used in combination. Smoking habits generate the upregulation of PAR-1 expression/activation in airway epithelial cells, and promoting IL-8 release might affect the recruitment of infiltrating cells in the airways of COPD patients.  相似文献   

2.
目的筛选与白细胞介素-13(interleukin-13,IL-13)具有较强结合能力的功能小肽,并检测其对气道上皮细胞HBE16分泌黏蛋白(mucin,MUC)5AC的影响。方法以重组人IL-13为靶蛋白,采用固相包被法对噬菌体随机展示十二肽库进行亲和筛选,并进行测序;将获得的与IL-13具有高亲和力的小肽偶联到嗜孔蓝蛋白(keyhole limpethemocyanin,KLH)载体上,制备KLH偶联肽K1、K3、K4,通过夹心ELISA法检测3种偶联肽对IL-13的封闭作用;通过细胞试验检测3种偶联肽对HBE16细胞分泌MUC5AC的影响。结果经6轮亲和富集筛选,获得了3个与IL-13具有较高亲和力的噬菌体克隆,插入的十二肽编号依次为P1、P3、P4;3种偶联肽K1、K3、K4对IL-13均具有明显的封闭作用;经K1+IL-13、K3+IL-13和K4+IL-13处理的HBE16细胞中MUC5AC基因mRNA的转录水平和蛋白表达水平均明显低于IL-13对照组(P<0.01)。结论经偶联肽封闭后,可减少IL-13刺激的气道上皮细胞HBE16中MUC5AC的分泌,为慢性气道炎症黏液高分泌的防治提供了新的思路和手段。  相似文献   

3.
Short-chain fatty acids (e.g., butyrate and propionate) are able to diminish endothelial cell activation. The aim of this study was to investigate whether intracellular IL-33 mediates the effects of butyrate and propionate on TNFα-induced IL-8 production and vascular cell adhesion molecule-1 (VCAM-1) expression. In addition, it was investigated whether regulating NF-κB and MAPK signaling pathways are involved. Intracellular IL-33 was measured in human endothelial cells (HUVECs) pre-incubated for 24 h with butyrate (0.1 mM or 5 mM), propionate (0.3 mM or 10 mM), or trichostatin A (TSA, 0.5 μM) prior to TNFα (1 ng/mL) stimulation (24 h). The effects of butyrate, propionate, and TSA on TNFα-induced IL-8, vascular cell adhesion molecule-1 (VCAM-1), NF-κB, and MAPK signaling pathways in normal HUVECs and IL-33 siRNA (siIL-33)-transfected HUVECs were compared to study the role of IL-33 in the protective effects of butyrate and propionate. Endogenous IL-33 was highly expressed in the perinuclear in HUVECs, which was significantly reduced by TNFα stimulation. The TNFα-induced reduction in IL-33 was prevented by pre-incubation with butyrate or propionate. Butyrate (0.1 mM), propionate (0.3 mM), and TSA inhibited the IL-8 production and activation of NF-κB. Interestingly, this effect was not observed in siIL-33-transfected HUVECs. The effects of butyrate (5 mM), propionate (10 mM), and TSA (0.5 μM) on VCAM-1 expression and activation of MAPK signaling pathways were not affected by siIL-33 transfection. In conclusion, we showed that the inhibitory effects of butyrate and propionate on TNFα-induced IL-8 production were mediated by the HDACs/IL-33/NF-κB pathway, while their effects on VCAM-1 expression might be associated with the HDACs/MAPK signaling pathway, independently of IL-33.  相似文献   

4.
ABSTRACT: BACKGROUND: Diesel exhaust particles (DEP) contribute substantially to ambient particulate matter (PM) air pollution in urban areas. Inhalation of PM has been associated with increased incidence of lung disease in susceptible populations. We have demonstrated that the glutathione Stransferase M1 (GSTM1) null genotype could aggravate DEP-induced airway inflammation in human subjects. Given the critical role airway epithelial cells play in the pathogenesis of airway inflammation, we established the GSTM1 deficiency condition in primary bronchial epithelial cells from human volunteers with GSTM1 sufficient genotype (GSTM1+) using GSTM1 shRNA to determine whether GSTM1 deficiency could exaggerate DEP-induced expression of interleukin-8 (IL-8) and IL-1beta proteins. Furthermore, the mechanisms underlying GSTM1 regulation of DEP-induced IL-8 and IL-1beta expression were also investigated. METHODS: IL-8 and IL-1beta protein levels were measured using enzyme-linked immunosorbent assay. GSTM1 deficiency in primary human bronchial epithelial cells was achieved using lentiviral GSTM1 shRNA particles and verified using real-time polymerase chain reaction and immunoblotting. Intracellular reactive oxygen species (ROS) production was evaluated using flow cytometry. Phosphorylation of protein kinases was detected using immunoblotting. RESULTS: Exposure of primary human bronchial epithelial cells (GSTM1+) to 25-100 mug/ml DEP for 24 h significantly increased IL-8 and IL-1beta protein expression. Knockdown of GSTM1 in these cells further elevated DEP-induced IL-8 and IL-1beta expression, implying that GSTM1 deficiency aggravated DEP-induced pro-inflammatory response. DEP stimulation induced the phosphorylation of extracellular signal-regulated kinase (ERK) and Akt, the downstream kinase of phosphoinositide 3-kinase (PI3K), in GSTM1+ bronchial epithelial cells. Pharmacological inhibition of ERK kinase and PI3K activity blocked DEP-induced IL-8 and IL-1beta expression. DEP-induced ERK and Akt phosphorylation could be increased by GSTM1 knockdown. In addition, pretreatment of HBEC with the antioxidant N-acetyl cysteine significantly inhibited DEP-induced ERK and Akt phosphorylation, and subsequent IL-8 and IL-beta expression. CONCLUSION: GSTM1 regulates DEP-induced IL-8 and IL-1beta expression in primary human bronchial epithelial cells by modulation of ROS, ERK and Akt signaling.  相似文献   

5.
Mucositis affects about 40 % of patients undergoing chemotherapy. Short chain fatty acids (SCFA), mainly butyrate, are claimed to improve mucosal integrity, reduce intestinal permeability and act as anti-inflammatory agents for the colon mucosa. We evaluated the effects of oral administration of SCFA or butyrate in the 5FU-induced mucositis. Mice received water, SCFA or butyrate during all experiment (10 days) and a single dose of 5FU (200 mg/kg) 3 days before euthanasia. We evaluated inflammatory and histological score by morphometry, and by activity of enzymes specific to neutrophil, eosinophil and macrophage and TLR-4, TNF-alpha and IL6 expressions. Intestinal permeability and tight junction protein ZO-1 expression were evaluated. Mice from the 5FU (5-Fluorouracil) group presented weight loss, ulcerations and inflammatory infiltration of neutrophils and eosinophils, increased expression of IL6 and TNF-alpha and increased intestinal permeability. SCFA minimized intestinal damage, reduced ulcerations without affecting intestinal permeability. Butyrate alone was more efficient at improving those parameters than in SCFA solution and also reduced intestinal permeability. The expression of pro-inflammatory cytokines and ZO-1 tended to be higher in the SCFA supplemented but not in the butyrate supplemented group. We showed the beneficial effects of butyrate on intestinal mucositis and its promising function as an adjuvant in the treatment of diseases not only of the colon, but also of the small intestine.  相似文献   

6.
Because of their low cost and easy production, silica nanoparticles (SiNPs) are widely used in multiple manufacturing applications as anti-caking, densifying and hydrophobic agents. However, this has increased the exposure levels of the general population and has raised concerns about the toxicity of this nanomaterial. SiNPs affect the function of the airway epithelium, but the biochemical pathways targeted by these particles remain largely unknown. Here we investigated the effects of SiNPs on the responses of 16HBE14o- cultured human bronchial epithelial (16HBE) cells to the damage-associated molecular pattern ATP, using fluorometric measurements of intracellular Ca2+ concentration. Upon stimulation with extracellular ATP, these cells displayed a concentration-dependent increase in intracellular Ca2+, which was mediated by release from intracellular stores. SiNPs inhibited the Ca2+ responses to ATP within minutes of application and at low micromolar concentrations, which are significantly faster and more potent than those previously reported for the induction of cellular toxicity and pro-inflammatory responses. SiNPs-induced inhibition is independent from the increase in intracellular Ca2+ they produce, is largely irreversible and occurs via a non-competitive mechanism. These findings suggest that SiNPs reduce the ability of airway epithelial cells to mount ATP-dependent protective responses.  相似文献   

7.

Background

Silica nanoparticles (SiNPs) have numerous beneficial properties and are extensively used in cosmetics and food industries as anti-caking, densifying and hydrophobic agents. However, the increasing exposure levels experienced by the general population and the ability of SiNPs to penetrate cells and tissues have raised concerns about possible toxic effects of this material. Although SiNPs are known to affect the function of the airway epithelium, the molecular targets of these particles remain largely unknown. Given that SiNPs interact with the plasma membrane of epithelial cells we hypothesized that they may affect the function of Transient Receptor Potential Vanilloid 4 (TRPV4), a cation-permeable channel that regulates epithelial barrier function. The main aims of this study were to evaluate the effects of SiNPs on the activation of TRPV4 and to determine whether these alter the positive modulatory action of this channel on the ciliary beat frequency in airway epithelial cells.

Results

Using fluorometric measurements of intracellular Ca2+ concentration ([Ca2+]i) we found that SiNPs inhibit activation of TRPV4 by the synthetic agonist GSK1016790A in cultured human airway epithelial cells 16HBE and in primary cultured mouse tracheobronchial epithelial cells. Inhibition of TRPV4 by SiNPs was confirmed in intracellular Ca2+ imaging and whole-cell patch-clamp experiments performed in HEK293T cells over-expressing this channel. In addition to these effects, SiNPs were found to induce a significant increase in basal [Ca2+]i, but in a TRPV4-independent manner. SiNPs enhanced the activation of the capsaicin receptor TRPV1, demonstrating that these particles have a specific inhibitory action on TRPV4 activation. Finally, we found that SiNPs abrogate the increase in ciliary beat frequency induced by TRPV4 activation in mouse airway epithelial cells.

Conclusions

Our results show that SiNPs inhibit TRPV4 activation, and that this effect may impair the positive modulatory action of the stimulation of this channel on the ciliary function in airway epithelial cells. These findings unveil the cation channel TRPV4 as a primary molecular target of SiNPs.
  相似文献   

8.
In addition to the acute manifestations of respiratory syncytial virus (RSV), persistent infection may be associated with long-term complications in the development of chronic respiratory diseases. To understand the mechanisms underlying RSV-induced long-term consequences, we established an in vitro RSV (strain A2) infection model using human bronchial epithelial (16HBE) cells that persists over four generations and analyzed cell inflammation and matrix adherence. Cells infected with RSV at multiplicity of infection (MOI) 0.0067 experienced cytolytic or abortive infections in the second generation (G2) or G3 but mostly survived up to G4. Cell morphology, leukocyte and matrix adherence of the cells did not change in G1 or G2, but subsequently, leukocyte adherence and cytokine/chemokine secretion, partially mediated by intercellular adhesion molecule-1 (ICAM-1), increased drastically, and matrix adherence, partially mediated by E-cadherin, decreased until the cells died. Tumor necrosis factor-α (TNF-α) secretion was inhibited by ICAM-1 antibody in infected-16HBE cells, suggesting that positive feedback between TNF-α secretion and ICAM-1 expression may be significant in exacerbated inflammation. These data demonstrate the susceptibility of 16HBE cells to RSV and their capacity to produce long-term progressive RSV infection, which may contribute to inflammation mobilization and epithelial shedding.  相似文献   

9.
10.
Oxidative stress has been implicated as an important contributing factor in the pathogenesis of several pulmonary inflammatory diseases. Previous studies have indicated a relationship between oxidative stress and the attenuation of epithelial tight junctions (TJs). In Human Bronchial Epithelial-16 cells (16HBE), we demonstrated the degradation of zonula occludens-1 (ZO-1), and claudin-2 exhibited a great dependence on the activation of the transient receptor potential melastatin (TRPM) 2 channel, phospholipase Cγ1 (PLCγ1) and the protein kinase Cα (PKCα) signaling cascade.  相似文献   

11.
The objective of the present studies was to examine the effect of dietary fat on the lipid composition of rat colonocytes and their utilization of short-chain fatty acids (SCFA). Rats were fed 14% beef fat, fish oil or safflower oil plus 2% corn oil in a semi-synthetic base diet for 4 wk. Colonocytes were isolated and their lipid composition was examined. Feeding beef fat and fish oil resulted in an increase in monounsaturated fatty acids and a reduction in ω-6 fatty acids. Feeding fish oil resulted in an enrichment with ω-3 fatty acids. These was no dietary influence on the amount of either cholesterol or phospholipids of colonocytes. Fish oil feeding resulted in significant increase in colonocyte free fatty acids (FFA) as compared to other diets. Dietary fat was found to have no effect on SCFA utilization by colonocytes. Colonocytes were found to utilize SCFA in the order of butyrate ≥acetate ≥propionate. The presence of acetate and propionate in the medium had no effect on the rate of butyrate utilization.  相似文献   

12.
The airway epithelium of the human nasal mucosa acts as a physical barrier that protects against inhaled substances and pathogens via bicellular and tricellular tight junctions (bTJs and tTJs) including claudins, angulin-1/LSR and tricellulin. High mobility group box-1 (HMGB1) increased by TGF-β1 is involved in the induction of nasal inflammation and injury in patients with allergic rhinitis, chronic rhinosinusitis, and eosinophilic chronic rhinosinusitis. However, the detailed mechanisms by which this occurs remain unknown. In the present study, to investigate how HMGB1 affects the barrier of normal human nasal epithelial cells, 2D and 2.5D Matrigel culture of primary cultured human nasal epithelial cells were pretreated with TGF-β type I receptor kinase inhibitor EW-7197 before treatment with HMGB1. Knockdown of angulin-1/LSR downregulated the epithelial barrier. Treatment with EW-7197 decreased angulin-1/LSR and concentrated the expression at tTJs from bTJs and increased the epithelial barrier. Treatment with a binder to angulin-1/LSR angubindin-1 decreased angulin-1/LSR and the epithelial barrier. Treatment with HMGB1 decreased angulin-1/LSR and the epithelial barrier. In 2.5D Matrigel culture, treatment with HMGB1 induced permeability of FITC-dextran (FD-4) into the lumen. Pretreatment with EW-7197 prevented the effects of HMGB1. HMGB1 disrupted the angulin-1/LSR-dependent epithelial permeability barriers of HNECs via TGF-β signaling in HNECs.  相似文献   

13.
Short-chain fatty acids (SCFAs) have a range of effects in metabolism and immune regulation. We have observed that delivery of SCFAs to lysosomes has potent immune regulatory effects, possibly as a surrogate signal for the presence of anaerobic organisms. To better understand the pharmacology of lysosomal SCFA donors, we investigated the distribution and metabolism of propionate and butyrate donors. Each analog ( 1 a and 2 a ) can donate three SCFA equivalents via ester hydrolysis through six intermediate metabolites. The compounds are stabilized by low pH, and stability in cells is usually higher than in medium, but is cell-type specific. Butyrate derivatives were found to be more stable than propionates. Tri-esters were more stable than di- or mono-esters. The donors were surprisingly stable in vivo, and hydrolysis of each position was organ specific. Jejunum and liver caused rapid loss of 4’’ esters. The gut metabolite pattern by i. v. differed from that of p.o. application, suggesting luminal and apical enzyme effects in the gut epithelium. Central organs could de-esterify the 11-position. Levels in lung relative to other organs were higher by p.o. than via i. v., suggesting that delivery route can influence the observed pharmacology and that gut metabolites distribute differently. The donors were largely eliminated by 24 h, following near linear decline in organs. The observed levels and distribution were found to be consistent with pharmacodynamic effects, particularly in the gut.  相似文献   

14.
Chronic respiratory diseases are often characterized by impaired epithelial function and remodeling. Mast cells (MCs) are known to home into the epithelium in respiratory diseases, but the MC-epithelial interactions remain less understood. Therefore, this study aimed to investigate the effect of MC proteases on bronchial epithelial morphology and function. Bronchial epithelial cells were stimulated with MC tryptase and/or chymase. Morphology and epithelial function were performed using cell tracking analysis and holographic live-cell imaging. Samples were also analyzed for motility-associated gene expression. Immunocytochemistry was performed to compare cytoskeletal arrangement. Stimulated cells showed strong alterations on gene, protein and functional levels in several parameters important for maintaining epithelial function. The most significant increases were found in cell motility, cellular speed and cell elongation compared to non-stimulated cells. Also, cell morphology was significantly altered in chymase treated compared to non-stimulated cells. In the current study, we show that MC proteases can induce cell migration and morphological and proliferative alterations in epithelial cells. Thus, our data imply that MC release of proteases may play a critical role in airway epithelial remodeling and disruption of epithelial function.  相似文献   

15.
TMEM16A, a Ca2+-activated chloride channel (CaCC), and its regulator, CLCA1, are associated with inflammatory airway disease and goblet cell metaplasia. CLCA1 is a secreted protein with protease activity that was demonstrated to enhance membrane expression of TMEM16A. Expression of CLCA1 is particularly enhanced in goblet cell metaplasia and is associated with various lung diseases. However, mice lacking expression of CLCA1 showed the same degree of mucous cell metaplasia and airway hyperreactivity as asthmatic wild-type mice. To gain more insight into the role of CLCA1, we applied secreted N-CLCA1, produced in vitro, to mice in vivo using intratracheal instillation. We observed no obvious upregulation of TMEM16A membrane expression by CLCA1 and no differences in ATP-induced short circuit currents (Iscs). However, intraluminal mucus accumulation was observed by treatment with N-CLCA1 that was not seen in control animals. The effects of N-CLCA1 were augmented in ovalbumin-sensitized mice. Mucus production induced by N-CLCA1 in polarized BCi-NS1 human airway epithelial cells was dependent on TMEM16A expression. IL-13 upregulated expression of CLCA1 and enhanced mucus production, however, without enhancing purinergic activation of Isc. In contrast to polarized airway epithelial cells and mouse airways, which express very low levels of TMEM16A, nonpolarized airway cells express large amounts of TMEM16A protein and show strong CaCC. The present data show an only limited contribution of TMEM16A to airway ion secretion but suggest a significant role of both CLCA1 and TMEM16A for airway mucus secretion.  相似文献   

16.
This review describes current evidence supporting butyrate impact in the homeostatic regulation of the digestive ecosystem in health and inflammatory bowel diseases (IBDs). Butyrate is mainly produced by bacteria from the Firmicutes phylum. It stimulates mature colonocytes and inhibits undifferentiated malignant and stem cells. Butyrate oxidation in mature colonocytes (1) produces 70–80% of their energetic requirements, (2) prevents stem cell inhibition by limiting butyrate access to crypts, and (3) consumes oxygen, generating hypoxia and maintaining luminal anaerobiosis favorable to the microbiota. Butyrate stimulates the aryl hydrocarbon receptor (AhR), the GPR41 and GPR109A receptors, and inhibits HDAC in different cell types, thus stabilizing the gut barrier function and decreasing inflammatory processes. However, some studies indicate contrary effects according to butyrate concentrations. IBD patients exhibit a lower abundance of butyrate-producing bacteria and butyrate content. Additionally, colonocyte butyrate oxidation is depressed in these subjects, lowering luminal anaerobiosis and facilitating the expansion of Enterobacteriaceae that contribute to inflammation. Accordingly, gut dysbiosis and decreased barrier function in IBD seems to be secondary to the impaired mitochondrial disturbance in colonic epithelial cells.  相似文献   

17.
Endothelial and epithelial barrier function is crucial for the maintenance of physiological processes. The barrier paracellular permeability depends on the composition and spatial distribution of the cell-to-cell tight junctions (TJ). Here, we provide an experimental workflow that yields several layers of physiological data in the setting of a single endothelial cell monolayer. Human umbilical vein endothelial cells were grown on Transwell filters. Transendothelial electrical resistance (TER) and 10 kDa FITC dextran flux were measured using Alanyl-Glutamine (AlaGln) as a paracellular barrier modulator. Single monolayers were immunolabelled for Zonula Occludens-1 (ZO-1) and Claudin-5 (CLDN5) and used for automated immunofluorescence imaging. Finally, the same monolayers were used for single molecule localization microscopy (SMLM) of ZO-1 and CLDN5 at the nanoscale for spatial clustering analysis. The TER increased and the paracellular dextran flux decreased after the application of AlaGln and these functional changes of the monolayer were mediated by an increase in the ZO-1 and CLDN5 abundance in the cell–cell interface. At the nanoscale level, the functional and protein abundance data were accompanied by non-random increased clustering of CLDN5. Our experimental workflow provides multiple data from a single monolayer and has wide applicability in the setting of paracellular studies in endothelia and epithelia.  相似文献   

18.
19.
20.
Background: The microbial colonization of the neonatal gut provides a critical stimulus for normal maturation and development. This process of early microbiota establishment, known to be affected by several factors, constitutes an important determinant for later health. Methods: We studied the establishment of the microbiota in preterm and full-term infants and the impact of perinatal antibiotics upon this process in premature babies. To this end, 16S rRNA gene sequence-based microbiota assessment was performed at phylum level and functional inference analyses were conducted. Moreover, the levels of the main intestinal microbial metabolites, the short-chain fatty acids (SCFA) acetate, propionate and butyrate, were measured by Gas-Chromatography Flame ionization/Mass spectrometry detection. Results: Prematurity affects microbiota composition at phylum level, leading to increases of Proteobacteria and reduction of other intestinal microorganisms. Perinatal antibiotic use further affected the microbiota of the preterm infant. These changes involved a concomitant alteration in the levels of intestinal SCFA. Moreover, functional inference analyses allowed for identifying metabolic pathways potentially affected by prematurity and perinatal antibiotics use. Conclusion: A deficiency or delay in the establishment of normal microbiota function seems to be present in preterm infants. Perinatal antibiotic use, such as intrapartum prophylaxis, affected the early life microbiota establishment in preterm newborns, which may have consequences for later health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号