首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyethyleneimine (PEI) modified palygorskite (Pal) was used for the adsorption of Cr(VI) in aqueous solution. The absorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). Characterized results confirmed that the Pal has been successfully modified by PEI. The modification of PEI increased the Cr(VI) adsorption performance of the Pal by the adsorption combined reduction mechanism, and amino groups of the adsorbent play the main role in the enhanced Cr(VI) adsorption. The maximum adsorption capacity was 51.10 mg·g-1 at pH 4.0 and 25 ℃. The adsorption kinetics of Cr(VI) on the adsorbent conforms to the Langmuir isotherm model. The maximum adsorption occurs at pH 3, and then the adsorption capacity of PEI-Pal was decreased with the increase of pH values. The adsorption kinetics of Cr(VI) on PEI-Pal was modeled with pseudo-second-order model. The addition of Cl-, SO42- and PO43- reduced the Cr(VI) adsorption by competition with Cr(VI) for the active sites of PEI-Pal. The Cr(VI) saturated PEI-Pal can be regenerated in alkaline solution, and the adsorption capacity can still be maintained at 30.44 mg·g-1 after 4 cycles. The results demonstrate that PEI-Pal can be used as a potential adsorbent of Cr(VI) in aqueous solutions.  相似文献   

2.
《分离科学与技术》2012,47(2):290-299
A novel adsorbent: Fe2+-modified vermiculite was prepared in a two-step reaction. Adsorption experiments were carried out as a function of pH, contact time, and concentration of Cr(VI). It was found that Fe2+-modified vermiculite was particularly effective for the removal of Cr(VI) at pH 1.0. The adsorption of Cr(VI) reached equilibrium within 60 min, and the pseudo-second-order kinetic model best described the adsorption kinetics. The adsorption data follow the Langmuir model more than the Freundlich model. At pH 1.0, the maximum Cr(VI) sorption capacity (Q max ) was 87.72 mg · g?1. Desorption of Cr(VI) from Fe2+-modified vermiculite using NaOH treatment exhibited a higher desorption efficiency by more than 80%. The sorption mechanisms including electrostatic interaction and reduction were involved in the Cr (VI) removal. The results showed that Fe2+-modified vermiculite can be used as a new adsorbent for Cr(VI) removal which has a higher adsorption capacity and a faster adsorption rate.  相似文献   

3.
Polyethyleneimine (PEI) modified palygorskite (Pal) was used for the adsorption of Cr(VI) in aqueous solution. The absorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). Characterized results confirmed that the Pal has been successfully modified by PEI. The modification of PEI increased the Cr(VI) adsorption performance of the Pal by the adsorption combined reduction mechanism, and amino groups of the adsorbent play the main role in the enhanced Cr(VI) adsorption. The maximum adsorption capacity was 51.10 mg·g−1 at pH 4.0 and 25 °C. The adsorption kinetics of Cr(VI) on the adsorbent conforms to the Langmuir isotherm model. The maximum adsorption occurs at pH 3, and then the adsorption capacity of PEI-Pal was decreased with the increase of pH values. The adsorption kinetics of Cr(VI) on PEI-Pal was modeled with pseudo-second-order model. The addition of Cl, SO42− and PO43− reduced the Cr(VI) adsorption by competition with Cr(VI) for the active sites of PEI-Pal. The Cr(VI) saturated PEI-Pal can be regenerated in alkaline solution, and the adsorption capacity can still be maintained at 30.44 mg·g−1 after 4 cycles. The results demonstrate that PEI-Pal can be used as a potential adsorbent of Cr(VI) in aqueous solutions.  相似文献   

4.
采用加热蒸发法制备了载铁氧化石墨烯壳聚糖(Fe-GOCS)复合球,对合成材料进行了表征,研究其对吸附Cr(Ⅵ)的影响因素。结果表明,随pH的降低,Fe-GOCS对Cr(Ⅵ)的吸附量增加。准1级动力学模型可用于描述0~10 h对Cr(Ⅵ)的吸附动力学过程,而10~45 h阶段对Cr(Ⅵ)的吸附符合准2级动力学方程。随环境温度的升高,FeGOCS对Cr(Ⅵ)吸附容量变大,吸附过程为自发的吸热反应,并符合Sips和Langmuir吸附等温线模型,对Cr(Ⅵ)的最大吸附量可达141.5 mg/g。材料经过5次吸附-解吸附后,对Cr(Ⅵ)的平衡吸附容量仍有77.2 mg/g。傅立叶红外光谱和X射线衍射仪证明Fe-GOCS上的-NH——2和负载的铁氧化物参与了Cr(VI)的吸附。  相似文献   

5.
Chromium is a common harmful pollutant with high toxicity and low bearing capacity of soil and water. Excellent salinity resistance, a wide p H range, and high regeneration capacity were essential for qualified adsorbents used in removing hexavalent chromium(Cr(VI)) from polluted water. Herein, iron oxalate modified weak basic resin(IO@D301) for the removal of Cr(VI) was prepared by the impregnation method. The IO@D301 was characterized by scanning electron microscope(SEM), Fourier transform infrared spectroscopy(FTIR), X-Ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS). Owing to abundant amine, carboxyl groups and iron ions existing on the surface, IO@D301 possesses high adsorption and salinity resistance capacity for Cr(VI). The maximum adsorption capacity of IO301 towards Cr(VI) reached 201.30 mg·g~(-1) at 293 K and a p H of 5. The adsorption equilibrium was well fitted by the Freundlich model, and the adsorption process was described by the pseudofirst-order kinetics model as spontaneous and exothermic. The mechanism may be identified as electrostatic attraction, coordination, and reduction, which was confirmed by FT-IR and X-ray photoelectron spectroscopy.  相似文献   

6.
Here, we report the synthesis of Fe3O4/G/PANI composite containing magnetite nanoparticles (Fe3O4), graphene sheets (G), and polyaniline (PANI) via chemical route for removal of toxic Cr (VI) from water. TEM image shows the formation of uniformly distributed magnetite nanoparticles on graphene/PANI composite. HRTEM images shows the formation of crystalline magnetite nanoparticles showing lattice fringes with inter‐planner distance 0.21 nm. The magnetic measurement shows magnetization 22 emu/g and ferromagnetic property of the adsorbent. The equilibrium adsorptions were well‐described by the Langmuir isotherm model and shows maximum adsorption capacity 153.54 mg/g at pH 6.5 and temperature 30 °C. The kinetics data well fitted by pseudo‐second‐order model and around 86% Cr (VI) removal completed within 20 min. The Cr (VI) removal capacitive decreases with increase in pH and ionic strength. The adsorbent shows leaching of iron nanoparticles at pH 1 whereas stable in solution having pH 2 and more. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44002.  相似文献   

7.
为了提高氧化石墨烯(GO)的吸附能力和分离效果,采用恒温搅拌法和水热法制备磁性三乙烯四胺氧化石墨烯(M-T-GO)复合吸附剂。通过X射线衍射(XRD)、傅里叶红外光谱(FT-IR)和透射电镜(TEM)测试方法对其进行表征,并对M-T-GO对Cu2+的pH、吸附动力学、吸附等温线和吸附热力学进行研究。结果表明,M-T-GO对Cu2+的吸附符合二级反应动力学和Langmuir吸附等温式描述,吸附反应为自发吸热过程,饱和吸附量为245.09 mg·g-1,同时具有快速分离和易再生的优点。采用X射线光电子能谱(XPS)推测M-T-GO对Cu2+的吸附机理,结果表明M-T-GO主要通过螯合作用和静电引力对Cu2+进行吸附。  相似文献   

8.
A new polymeric adsorbent material based on polyethylene (PE) was prepared by photografting of 2‐(dimethylamino)ethyl methacrylate (DMAEMA) as a positively chargeable monomer to a PE film. The effects of the experimental parameters, such as the pH value, temperature, and grafted amount on adsorption of chromium(VI) (Cr(VI)) ions were investigated for the DMAEMA‐grafted PE (PE‐g‐PDAMEMA) films. The maximum adsorption capacity was obtained at the initial pH value of 3.0 for a PE‐g‐PDMAEMA film with 1.8 mmol/g and the maximum adsorption capacity obtained was higher than or compatible to those of many of the other polymeric adsorbents prepared for Cr(VI) ions. The adsorption kinetics obeyed the mechanism of the pseudo‐second order kinetic model and adsorption of Cr(VI) ions on PE‐g‐PDMAEMA films was well expressed by the Langmuir isotherm model. A high Langmuir adsorption constant suggests that the adsorption of Cr(VI) ions occurs between protonated dimethylamino groups and ions mainly through the electrostatic interaction. Cr(VI) ions adsorbed were successfully desorbed from a PE‐g‐PDMAEMA film in solutions of NaCl, NH4Cl, NH4Cl containing NaOH, and NaOH and a PE‐g‐PDMAEMA film was regenerated and repeatedly used for adsorption of Cr(VI) ions without appreciable loss in the adsorption capacity. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43360.  相似文献   

9.
In this study, a graphene oxide nanoribbons/chitosan (GONRs/CTS) composite membrane was successfully prepared by encapsulating CTS into GONRs, which were unzipped from multi-walled carbon nanotubes. The GONRs/CTS composite membrane so prepared was characterized using scanning electron microscopy, X-Ray diffraction and Fourier transform infrared spectroscopy. The effects of the experimental conditions such as the pH (2‒7), adsorbent dosage (10‒50 mg), experimental time (5 min–32 h), uranium concentration (25‒300 mg∙L−1), experimental temperature (298 K‒328 K) on the adsorption properties of the composite membrane for the removal of U(VI) were investigated. The results showed that the U(VI) adsorption process of the GONRs/CTS composite membrane was pH-dependent, rapid, spontaneous and endothermic. The adsorption process followed the pseudo-secondary kinetics and Langmuir models. The maximum U(VI) adsorption capacity of the GONRs/CTS composite membrane was calculated to be 320 mg∙g−1. Hence, the GONRs/CTS composite membrane prepared in this study was found to be suitable for separating and recovering uranium from wastewater.  相似文献   

10.
Three different carbonaceous materials, activated carbon, graphene oxide, and multi-walled carbon nanotubes, were modified by nitric acid and used as adsorbents for the removal of methylene blue dye from aqueous solution. The adsorbents were characterized by N2 adsorption/desorption isotherms, infrared spectroscopy, particle size, and zeta potential measurements. Batch adsorption experiments were carried out to study the effect of solution pH and contact time on dye adsorption properties. The kinetic studies showed that the adsorption data followed a pseudo second-order kinetic model. The isotherm analysis indicated that the adsorption data can be represented by Langmuir isotherm model. The remarkably strong adsorption capacity normalized by the BET surface area of graphene oxide and carbon nanotubes can be attributed to π–π electron donor acceptor interaction and electrostatic attraction.  相似文献   

11.
In the present study, a low-cost adsorbent is developed from the naturally and abundantly available sawdust which is biodegradable. The removal capacity of Cr(VI) from aqueous solutions and from the synthetically prepared industrial effluent of electroplating and tannery industries is obtained. The batch experiments are carried out to investigate the effect of the significant process parameters such as initial pH, change in pH during adsorption, contact time, adsorbent amount, and the initial Cr(VI) concentration. The maximum adsorption of Cr(VI) on sawdust is obtained at an initial pH value of 1. The value of pH increases with increase in contact time and initial Cr(VI) concentration. The equilibrium data for the adsorption of Cr(VI) on sawdust is tested with various adsorption isotherm models such as Langmuir, Freundlich, Redlich–Peterson, Koble–Corrigan, Tempkin, Dubinin–Radushkevich and Generalized equation. The Langmuir isotherm model is found to be the most suitable one for the Cr(VI) adsorption using sawdust and the maximum adsorption capacity obtained is 41.5 mg g−1 at a pH value of 1. The adsorption process follows the second-order kinetics and the corresponding rate constants are obtained. Desorption of Cr(VI) from sawdust using acid and base treatment exhibited a higher desorption efficiency by more than 95%. A feasible solution is proposed, for the disposal of the contaminant (acid and base solutions) containing high concentration of Cr(VI) obtained during the desorption process. The interference of other ions which are generally present in the electroplating and tannery industrial effluent streams on the Cr(VI) removal is investigated.  相似文献   

12.
Batch adsorption experiments were carried out to remove heavy metal ions such as Cu (II), Ni (II), Cd (II), and Cr (VI) from single‐metal solutions using a polyaniline/palygorskite (PP) composite. Different parameters affecting the adsorption capacity such as contact time and pH of the solution have been investigated. The structural characteristics of the PP composite were studied in this work. Atomic absorption spectroscopy was used for the measurement of heavy metal contents, and the adsorption capacity (qe) calculated were 114 mg Cu (II) g?1, 84 mg Ni (II) g?1, 56 mg Cd (II) g?1, and 198 mg Cr (VI) g?1 under optimal conditions. The removal of the metal ions from solutions was assigned to chelation, ionic exchange, and electrostatic attraction. Data from this study proved that the novel organic/inorganic composite presents great potential in the recovery and elimination of noble or heavy metal ions from industrial wastewater. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

13.
Cr (VI) is a highly toxic pollutant to humans, to achieve high adsorption capacity, easy recovery, and good reusability, polyethersulfone/polydopamine (PES/PDA) ultrafine fibers were prepared successfully. A series of preparing effect factors were investigated systematically and the optimum one is 8.5 pH value at room temperature and 2 g/L dopamine concentration. And then they were used as an adsorbent for the removal of Cr (VI) ions from wastewater. The effect factors pH, the adsorbent dosage, and time were discussed on Cr (VI) adsorption process and the Cr (VI) adsorption behavior was investigated. It is found that the maximum Cr (VI) adsorption capacity is 115.2 ± 4.8 mg/g at pH = 3 using 0.06 g PES/PDA with 80 mins. The Cr (VI) adsorption process followed the pseudo-second-order model (r2 ≥ 0.99) and adsorption isotherms were fitted to the Langmuir model (R2 ≥ 0.999). Furthermore, the Cr (VI) adsorption mechanism was supposed according to the X-ray photoelectron spectroscopic results. Finally, PES/PDA ultrafine fibers were considered to be a promising adsorbent with good stability (decomposing temperature, 356°C), high adsorption efficiency (112.1 ± 2.5 mg/g), and good reusability (three times) on the coexistence of anions and the actual industry wastewater environment.  相似文献   

14.
The magnetic nitrogen-doped carbon (MNC) was prepared from polypyrrole by a simple high temperature calcination process in this paper. The structure and properties of MNC were analyzed by scanning electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, Brunner-Emmet-Teller, vibrating sample magnetometer, and X-ray photoelectron spectroscopy. The capacity of MNC to adsorb Cr(VI) and Pb(II) was evaluated. The effects of the initial pH, dosage, concentration and temperature on the adsorption capacity of MNC were measured. MNC had a large specific surface area and a special porous structure. Its nitrogen and carbon sources were rich, and the ratio of carbon to nitrogen was fixed. The maximum Cr(VI)-adsorption capacity and maximum Pb(II) adsorption capacity of MNC could reach 456.63 and 507.13 mg∙g1 at 318 K, respectively. The pseudo-second-order model was used to describe the adsorption kinetics of MNC, and the Freundlich model was employed to discuss its isotherms. The adsorption process was affected by the electrostatic force, the reducing reaction, pores and chelation. The results of this study suggest that MNC is a material with superior performance, and is very easily regenerated, reused, and separated in the adsorption process.  相似文献   

15.
Industrial use of heavy metals and dyes critically depends on the effective handling of industrial effluents. Effective remediation of industrial effluents using various adsorbent materials has thus become critical. In this paper, we study two-dimensional MXenes as an adsorbent for removing Cr(VI) and methyl orange (MO) in waters. The physico-chemical performance of MXenes was studied using X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer?Emmett?Teller, scanning electron microscopy, high resolution-transmission electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy techniques. The adsorption system, including influence of contact time, pH of solutions, co-ions, and desorption experiments were performed for effective Cr(VI) and MO removal. The Cr(VI) and MO removal rate of the MXenes was very fast, and the kinetic system was driven by pseudo-second-order kinetics. The sorption isotherm closely well-tailored with the Langmuir isotherm, and the maximum removal efficiencies were 104 and 94.8 mg/g for Cr(VI) and MO, respectively. The MXenes was successfully regenerated by 0.1 M NaOH aqueous solution and can be repeatedly recycled. The uptake of Cr(VI) and MO by the MXenes was mainly due to chemical adsorption, namely electrostatic adsorption, complexation, surface interactions, and ion exchange mechanisms. This investigation demonstrates the selectivity and feasibility of the MXenes as a real adsorbent for eliminating Cr(VI) and MO from the aqueous environment.  相似文献   

16.
《Polymer Composites》2017,38(12):2779-2787
Polypyrrole/NiFe2O4 (PPy/NiFe2O4) composites were prepared by ultrasonic oxidative polymerization in the presence of NiFe2O4 nanoparticles (NPs). The nanostructure of PPy/NiFe2O4 was confirmed by the X‐ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and vibrating sample magnetometer (VSM) examinations. The adsorption of Cr(VI) onto the PPy/NiFe2O4 composite was lowly pH dependent and the adsorption kinetics followed the Pseudo‐second‐order model. The Langmuir isothermal model well described the adsorption isotherm data and the maximum adsorption capacity increased with the increase of temperature. The maximum adsorption capacity of the PPy/NiFe2O4 for Cr(VI) ions was up to 50 mg/g at pH 2.0. The excellent adsorption characteristic of PPy/NiFe2O4 composite will render it a highly efficient and economically viable adsorbent for Cr(VI) ions removal. POLYM. COMPOS., 38:2779–2787, 2017. © 2015 Society of Plastics Engineers  相似文献   

17.
In this work, aluminum industrial waste, red mud (RM), was activated to verify its potential in the management of electroplating wastewater containing hexavalent chromium (Cr(VI)). A comparison between the adsorption capabilities of RM and activated red mud (ARM) towards Cr(VI) from aqueous solutions was made. The effects of several parameters were evaluated. The adsorbents were characterized by field emission scanning electron microscopy (FESEM), Fourier transmission infrared spectroscopy (FTIR), x-ray diffraction (XRD), zeta potential, and thermogravimetric analysis (TGA). The particle size was observed as 23.59 nm. The ARM demonstrated an acceptable adsorption capacity of 25.641 mg/g at a pH of 2, adsorbent dosage of 2 g/L, initial Cr(VI) concentration of 100 mg/L, at 25°C. The experimental data is in good agreement with Langmuir adsorption isotherm. The kinetic study was performed to verify that the adsorption follows pseudo-second-order kinetics. In addition, the ARM showed decent recyclability for adsorbing Cr(VI) as even after three adsorption cycles, and the adsorption capacity was reduced by ~30%. The results recommend ARM to be an efficient and cost-effective adsorbent for Cr(VI) removal from industrial wastewater.  相似文献   

18.
A novel, bioadsorbent material of polyethylenimine‐modified magnetic chitosan microspheres enwrapping magnetic silica nanoparticles (Fe3O4–SiO2–CTS‐PEI) was prepared under relatively mild conditions. The characterization results indicated that the adsorbent exhibited high acid resistance and magnetic responsiveness. The Fe3O4 loss of the adsorbent was measured as 0.09% after immersion in pH 2.0 water for 24 h, and the saturated magnetization was 11.7 emu/g. The introduction of PEI obviously improved the adsorption capacity of Cr(VI) onto the adsorbent by approximately 2.5 times. The adsorption isotherms and kinetics preferably fit the Langmuir model and the pseudo‐second‐order model. The maximum adsorption capacity was determined as 236.4 mg/g at 25°C, which was much improved compared to other magnetic chitosan materials, and the equilibrium was reached within 60 to 120 min. The obtained thermodynamic parameters revealed the spontaneous and endothermic nature of the adsorption process. Furthermore, the Cr(VI)‐adsorbed adsorbent could be effectively regenerated using a 0.1 mol/L NaOH solution, and the adsorbent showed a good reusability. Due to the properties of good acid resistance, strong magnetic responsiveness, high adsorption capacity, and relatively rapid adsorption rate, the Fe3O4–SiO2–CTS‐PEI microspheres have a potential use in Cr(VI) removal from acidic wastewater. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43078.  相似文献   

19.
《分离科学与技术》2012,47(13):2989-3002
Abstract

A modified fungal biomass was prepared through the adsorption of polyethylenimine (PEI) and subsequent crosslinking with glutaraldehyde on the biomass surface. FTIR result verified that the amine groups were introduced on the biomass surface. As a large number of amine groups are present on the biomass surface and can be protonated in solution, the modified biomass was positively charged at pH<10.3. The modified biomass was used as an adsorbent to remove humic acid in a series of batch adsorption experiments. The amount of humic acid adsorbed on the biosorbent decreased with increasing solution pH, and the electrostatic interaction between the positive protonated amine groups on the biomass surface and the negative carboxyl groups in the humic acid molecules played an important role in humic acid adsorption. The time‐dependent sorption of humic acid on the biomass can be described well by the Fickian diffusion model at the initial stage and the pseudo‐second‐order equation over 10 h. Using the Langmuir adsorption isotherm, the maximum sorption capacity of the modified biomass for humic acid at pH 5 was 96.5 mg/g. The desorption experiments showed that the humic acid loaded biomass could be easily regenerated in a 0.1 M NaOH solution, and the regenerated biomass possessed good adsorption capacity up to the fifth cycle. The PEI‐modified biomass with polyamine chains shows the potential for application in water treatment for the removal of humic substances.  相似文献   

20.
《分离科学与技术》2012,47(11-12):3200-3220
Abstract

Grainless stalk of corn (GLSC) was tested for removal of Cr(VI) and Cr(III) from aqueous solution at different pH, contact time, temperature, and chromium/adsorbent ratio. The results show that the optimum pH for removal of Cr(VI) is 0.84, while the optimum pH for removal of Cr(III) is 4.6. The adsorption processes of both Cr(VI) and Cr(III) onto GLSC were found to follow first-order kinetics. Values of k ads of 0.037 and 0.018 min?1 were obtained for Cr(VI) and Cr(III), respectively. The adsorption capacity of GLSC was calculated from the Langmuir isotherm as 7.1 mg g?1 at pH 0.84 for Cr(VI), and as 7.3 mg g?1 at pH 4.6 for Cr(III), at 20°C. At the optimum pH for Cr(VI) removal, Cr(VI) reduces to Cr(III). EPR spectroscopy shows the presence of Cr(V) + Cr(III)-bound-GLSC at short contact times and adsorbed Cr(III) as the final oxidation state of Cr(VI)-treated GLSC. The results indicate that, at pH ≈ 1, GLSC can completely remove Cr(VI) from aqueous solution through an adsorption-coupled reduction mechanism to yield adsorbed Cr(III) and the less toxic aqueous Cr(III), which can be further removed at pH 4.6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号