首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《分离科学与技术》2012,47(3):485-500
Abstract

A novel adsorption cycle is examined experimentally and theoretically for recovering carbon dioxide from a 50 mol% mixture with carbon monoxide. Several adsorbents are considered, and zeolite NaY is chosen for the process due to its high capacity and selectivity for CO2 in the presence of CO. The process consists of three steps. The bed is fed the gas mixture at 273 K until CO2 breakthrough occurs. The bed then undergoes countercurrent blowdown of CO2 while heating at 391 K and is finally cooled to the initial feed temperature once the bed has been depleted of CO2. Results are presented from laboratory scale experiments and are described using numerical simulations. This novel cycle provides a method for capturing and producing CO2 without the need for a purge gas and has low energy requirements if waste heat is available.  相似文献   

2.
《分离科学与技术》2012,47(11):1606-1616
This paper reports on the properties of an MFI-type zeolite (silicalite-1) membrane synthesized on a novel tubular support with a 0.45 µm-pore size active layer consisting of zirconium and titanium oxides. Even though the membrane was synthesized by a pore plugging method, apart from penetrating into the support, the silicalite-1 crystals formed a 1.5 µm layer on top of the support. After the zeolite synthesis, the Si constituted more than 35% of the active layer of the support, which implies small size and close packing of the silicalite-1 crystals in the pores of the active layer.

Single gas permeation tests with N2 and CO2 revealed comparable N2 and CO2 permeances. On the other hand, CO2/N2 gas separation tests performed at different total feed pressures and feed compositions lead to CO2/N2 permselectivities as high as 26.0, with the corresponding CO2 permeance of 6 × 10?8 mol/m2 Pa s. The effects of changing the partial pressure gradient of CO2 across the membrane by means of varying the total feed pressure and the feed composition on the CO2 permeance and CO2/N2 permselectivity are discussed.  相似文献   

3.
《分离科学与技术》2012,47(10):1385-1394
Carbon dioxide capture and storage (CCS) has been propounded as an important issue in greenhouse gas emissions control. In this connection, in the present article, the advantages of using polymeric membrane for separation of carbon dioxide from CO2/N2 streams have been discussed. A novel composition for fabrication of a blend membrane prepared from acrylonitrile-butadiene-styrene (ABS) terpolymer and polyethylene glycol (PEG) has been suggested. The influence of PEG molecular weight (in the range of 400 to 20000) on membrane characteristics and gas separation performance, the effect of PEG content (0–30 wt%) on gas transport properties, and the effect of feed side pressure (ranging from 1 to 8 bar) on CO2 permeability have been studied. The results show that CO2 permeability increases from 5.22 Barrer for neat ABS to 9.76 Barrer for ABS/PEG20000 (10 wt%) while the corresponding CO2/N2 selectivity increases from 25.97 to 44.36. Furthermore, it is concluded that this novel membrane composition has the potential to be considered as a commercial membrane.  相似文献   

4.
The relation between anthropogenic emissions of CO2 and its increased levels in the atmosphere with global warming and climate change has been well established and accepted. Major portion of carbon dioxide released to the atmosphere, originates from combustion of fossil fuels. Integrated gasification combined cycle (IGCC) offers a promising fossil fuel technology considered as a clean coal-based process for power generation particularly if accompanied by precombustion capture. The latter includes separation of carbon dioxide from a synthesis gas mixture containing 40 mol% CO2 and 60 mol% H2.A novel approach for capturing CO2 from the above gas mixture is to use gas hydrate formation. This process is based on selective partition of CO2 between hydrate phase and gas phase and has already been studied with promising results. However high-pressure requirement for hydrate formation is a major problem.We have used semiclathrate formation from tetrabutylammonium bromide (TBAB) to experimentally investigate CO2 capture from a mixture containing 40.2 mol% of CO2 and 59.8 mol% of H2. The results shows that in one stage of gas hydrate formation and dissociation, CO2 can be enriched from 40 mol% to 86 mol% while the concentration of CO2 in equilibrium gas phase is reduced to 18%. While separation efficiency of processes based on hydrates and semi-clathrates are comparable, the presence of TBAB improves the operating conditions significantly. Furthermore, CO2 concentration could be increased to 96 mol% by separating CO2 in two stages.  相似文献   

5.
An experimental study was performed for the recovery of CO2 from flue gas of the electric power plant by pressure swing adsorption process. Activated carbon was used as an adsorbent. The equilibrium adsorption isotherms of pure component and breakthrough curves of their mixture (CO2 : N2 : O2=17 : 79 : 4 vol%) were measured. Pressure equalization step and product purge step were added to basic 4-step PSA for the recovery of strong adsorbates. Through investigation of the effects of each step and total feed rate, highly concentrated CO2 could be obtained by increasing the adsorption time, product purge time, and evacuation time simultaneously with full pressure-equalization. Based on the basic results, the 3-bed, 8-step PSA cycle with the pressure equalization and product purge step was organized. Maximum product purity of CO2 was 99.8% and recovery was 34%.  相似文献   

6.
《分离科学与技术》2012,47(2):332-345
ABSTRACT

Microalgae are the unicellular or multicellular photosynthetic microorganisms that can efficiently fix carbon dioxide (CO2) from various sources such as the environment, industrial flue gas, and some carbonate salts. In the present study, one green microalgal strain and a cyanobacterial consortium were used separately for the sequestration of CO2 at different pHs (7–11), at different initial concentrations of CO2 (5–20%), and at various inoculum sizes (5–12.5%). The maximum sequestration of CO2 was found to be 74.37 ± 0.49% and 71.12 ± 0.05% at 5% and 15% CO2 for green algae and cyanobacterial consortium. The biomass generated after sequestration of CO2 was utilized for the synthesis of biomolecules.  相似文献   

7.
This project is a trial conducted under contract with CO2CRC, Australia of a new CO2 capture technology that can be applied to integrated gasification combined cycle power plants and other industrial gasification facilities. The technology is based on combination of two low temperature processes, namely cryogenic condensation and the formation of hydrates, to remove CO2 from the gas stream. The first stage of this technology is condensation at −55 °C where CO2 concentration is expected to be reduced by up to 75 mol%. Remaining CO2 is captured in the form of solid hydrate at about 1 °C reducing CO2 concentration down to 7 mol% using hydrate promoters. This integrated cryogenic condensation and CO2 hydrate capture technology hold promise for greater reduction of CO2 emissions at lower cost and energy demand. Overall, the process produced gas with a hydrogen content better than 90 mol%. The concentrated CO2 stream was produced with 95-97 mol% purity in liquid form at high pressure and is available for re-use or sequestration. The enhancement of carbon dioxide hydrate formation and separation in the presence of new hydrate promoter is also discussed. A laboratory scale flow system for the continuous production of condensed CO2 and carbon dioxide hydrates is also described and operational details are identified.  相似文献   

8.
ABSTRACT

SAPO-34 molecular sieves have a high adsorption capacity in separation of CO2 from CO2/CH4 mixture. In this study, SAPO-34 was modified by different solutions at various operating conditions to enhance the removal of carbon dioxide from the methane gas. Modifications can change pore size and also Si/Al ratio in SAPO-34 and make changes in the acidity of the adsorbent via the ion exchange process. The effects of temperature and pressure on the separation were studied using the design of experiments. Finally, based on the results of the experimental optimization process applying central composite design (CCD) method, the highest yield of CO2 separation from the methane gas (95%) was obtained when using P-SAPO-34 sample at 17.4°C and 4.6 bar.  相似文献   

9.
David Grainger 《Fuel》2008,87(1):14-24
Published data for an operating power plant, the ELCOGAS 315 MWe Puertollano plant, has been used as a basis for the simulation of an integrated gasification combined cycle process with CO2 capture. This incorporated a fixed site carrier polyvinylamine membrane to separate the CO2 from a CO-shifted syngas stream. It appears that the modified process, using a sour shift catalyst prior to sulphur removal, could achieve greater than 85% CO2 recovery at 95 vol% purity. The efficiency penalty for such a process would be approximately 10% points, including CO2 compression. A modified plant with CO2 capture and compression was calculated to cost €2320/kW, producing electricity at a cost of 7.6 € cents/kWh and a CO2 avoidance cost of about €40/tonne CO2.  相似文献   

10.
《分离科学与技术》2012,47(16):2320-2330
In this research, continuous SAPO-34 membranes were synthesized via secondary growth method onto both α-Al2O3 and mullite supports at three levels of synthesis temperature: 185, 195, and 220°C for 24 h. The synthesized membranes were characterized using XRD and SEM analysis and single gas permeation experiments. It was found out that support material and synthesis temperature both have significant effects on the membrane performance. At higher synthesis temperature, SAPO-34 crystals grown over the mullite support become more uniform and smaller in size but those grown on the α-Al2O3 support become larger. Effect of synthesis temperature on single gas permeation properties of the synthesized SAPO-34 membranes was also studied. For the mullite supported membranes, the CH4 and CO2 permeances decrease as synthesis temperature increases; but in the case of the alumina supported membranes, by increasing synthesis temperature, CH4 and CO2 permeances first decrease up to 195°C and then increase up to 220°C. Even in equal membrane thicknesses, the mullite supported membrane shows lower gas permenaces. Increasing synthesis temperature decreases CO2/CH4 ideal selectivity for the α-Al2O3 supported membranes, while increases for the mullite supported membranes. Under optimum synthesis conditions, at room temperature and 2 bar feed pressure, the CO2 permeance through the α-Al2O3 and the mullite supported SAPO-34 membranes are 8.2 × 10?7 and 8.5 × 10?8 (mol/m2 · s · Pa), respectively, and CO2/CH4 ideal selectivities are 51 and 61, respectively.  相似文献   

11.
A new process is proposed which converts CO2 and CH4 containing gas streams to synthesis gas, a mixture of CO and H2 via the catalytic reaction scheme of steam-carbon dioxide reforming of methane or the respective one of only carbon dioxide reforming of methane, in permeable (membrane) reactors. The membrane reformer (permreactor) can be made by reactive or inert materials such as metal alloys, microporous ceramics, glasses and composites which all are hydrogen permselective. The rejected CO reacts with steam and converted catalytically to CO2 and H2 via the water gas shift in a consecutive permreactor made by similar to the reformer materials and alternatively by high glass transition temperature polymers. Both permreactors can recover H2 in permeate by using metal membranes, and H2 rich mixtures by using ceramic, glass and composite type permselective membranes. H2 and CO2 can be recovered simultaneously in water gas shift step after steam condensation by using organic polymer membranes. Product yields are increased through permreactor equilibrium shift and reaction separation process integration.

CO and H2 can be combined in first step to be used for chemical synthesis or as fuel in power generation cycles. Mixtures of CO2 and H2 in second step can be used for synthesis as well (e.g., alternative methanol synthesis) and as direct feed in molten carbonate fuel cells. Pure H2 from the above processes can be used also for synthesis or as fuel in power systems and fuel cells. The overall process can be considered environmentally benign because it offers an in-situ abatement of the greenhouse CO2 and CH4 gases and related hydrocarbon-CO2 feedstocks (e.g., coal, landfill, natural, flue gases), through chemical reactions, to the upgraded calorific value synthesis gas and H2, H2 mixture products.  相似文献   

12.
For selective removal of H2S from much larger quantities of CO2 under pressure, an industrial prototype spray column has been constructed. Sodium hydroxide solution was atomized by a pressure nozzle of special design and entered the scrubber as fine spray to contact the sour gases.

Several operating variables were examined in order to indicate optimal operating conditions for maximum selectivity of H2S over CO2. Fine mist and short contact time favor this selective absorption process. An optimum inlet reactant concentration was found dependent upon the H2S content relative to CO2 in the inlet sour gas mixture. A special nozzle/shield configuration to avoid contact of sour gas with highly turbulent liquid during droplet formation significantly improved the selectivity.  相似文献   


13.
A series of carbide-derived carbons (CDCs) with different surface oxygen contents were prepared from TiC powder by chlorination and followed by HNO3 oxidation. The CDCs were characterized systematically by a variety of means such as Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, ultimate analysis, energy dispersive spectroscopy, N2 adsorption, and transmission electron microscopy. CO2 adsorption measurements showed that the oxidation process led to an increase in CO2 adsorption capacity of the porous carbons. Structural characterizations indicated that the adsorbability of the CDCs is not directly associated with its microporosity and specific surface area. As evidenced by elemental analysis, X-ray photoelectron spectroscopy, and energy dispersive spectroscopy, the adsorbability of the CDCs has a linear correlation with their surface oxygen content. The adsorption mechanism was studied using quantum chemical calculation. It is found that the introduction of O atoms into the carbon surface facilitates the hydrogen bonding interactions between the carbon surface and CO2 molecules. This new finding demonstrated that not only the basic N-containing groups but also the acidic O-containing groups can enhance the CO2 adsorbability of porous carbon, thus providing a new approach to design porous materials with superior CO2 adsorption capacity.  相似文献   

14.
《分离科学与技术》2012,47(13):1857-1865
Carbon dioxide is the most important anthropogenic greenhouse gas and it accounts for about 80% of all greenhouse gases (GHG). The global atmospheric CO2 concentrations have been increased significantly and have become the major source responsible for global warming; the greatest environmental challenge the world is facing now. The efforts to control the GHG emissions include the recovery of CO2 from flue gas. In this work, feasibility analysis, based on a single stage membrane process, has been carried out with an in-house membrane program interfaced within process simulation program (AspenHysys) to investigate the influence of process parameters on the energy demand and flue gas processing cost. A novel CO2-selective membrane with the facilitated transport mechanism has been employed to capture CO2 from the flue gas mixtures. The results show that a membrane process using the facilitated transport membrane can also be considered as an alternative CO2 capture process and it is possible to achieve more than 90% CO2 recovery and 90% CO2 purity in the permeate with reasonable energy consumption compared to amine absorption and other capture techniques.  相似文献   

15.
Jyh-Cherng Chen  Jian-Sheng Huang 《Fuel》2007,86(17-18):2824-2832
For mitigating the emission of greenhouse gas CO2 from general air combustion systems, a clean combustion technology O2/RFG is in development. The O2/RFG combustion technology can significantly enhance the CO2 concentration in the flue gas; however, using almost pure oxygen or pure CO2 as feed gas is uneconomic and impractical. As a result, this study proposes a modified O2/RFG combustion technology in which the minimum pure oxygen is mixed with the recycled flue gas and air to serve as the feed gas. The effects of different feed gas compositions and ratios of recycled flue gas on the emission characteristics of CO2, CO and NOx during the plastics incineration are investigated by theoretical and experimental approaches.Theoretical calculations were carried out by a thermodynamic equilibrium program and the results indicated that the emissions of CO2 were increased with the O2 concentrations in the feed gas and the ratios of recycled flue gas increased. Experimental results did not have the same trends with theoretical calculations. The best feed gas composition of the modified O2/RFG combustion was 40% O2 + 60% N2 and the best ratio of recycled flue gas was 15%. As the O2 concentration in feed gas and the ratio of recycled flue gas increased, the total flow rates and pressures of feed gas reduced. The mixing of solid waste and feed gas was incomplete and the formation of CO2 decreased. Moreover, the emission of CO was decreased as the O2 concentration in feed gas and the ratio of recycled flue gas increased. The emission of NOx gradually increased with rising the ratio of recycled flue gas at lower O2 concentration (<40%) but decreased at higher O2 concentration (>60%).  相似文献   

16.
《分离科学与技术》2012,47(4):766-777
Abstract

Aqueous ammonia was investigated as a new absorbent of the chemical absorption process for CO2 capture from combustion flue gas. The effects of the temperature and concentration of aqueous ammonia on CO2 absorption in a semi‐batch reactor were studied by interpreting breakthrough curves. Raman spectroscopy analysis of CO2 loaded aqueous ammonia provided concentration changes of bicarbonate, carbonate, and carbamate as well as CO2 sorption capacity at given time during the absorption with 13 wt% aqueous ammonia at 25°C. It was observed that carbamate formation was dominating at the early stage of absorption. Then, the bicarbonate formation took over the domination at the later stage while the carbonate remained unchanged.  相似文献   

17.
An experimental and theoretical study is performed for bulk separation of H2/CO2 mixture (70/30 volume %) by PSA process with zeolite 5A, a process widely used commercially in conjunction with the catalytic steam reforming of natural gas or naphtha. For the optimized adsorption conditions of PSA, the characteristics of adsorption/desorption characteristics have been studied through breakthrough and desorption experiments under various conditions. The purge-to-feed ratio is important to the H2 product purity only at a long adsorption step time. H2 could be concentrated from 70% in the feed to 99.99% at H2 recovery of 67.5%. The results of all five steps in PSA are successfully predicted by the LDF model considering an energy balance and nonlinear isotherm. For the model, the effective diffusivities (D,) are obtained separately from the uptake curves of H2 and CO2. The Langmuir-Freundlich isotherm is used to correlate the experimental equilibrium data and is very well fitted to the results.  相似文献   

18.
《分离科学与技术》2012,47(15):2498-2506
ABSTRACT

A series of experiments on CO2 hydrate formation were carried out in the presence of titanium dioxide (TiO2), silicon dioxide (SiO2), multi-walled carbon nanotubes (MWNTs) nanoparticles. The effects of these nanoparticles on induction time, final gas consumption, and gas storage capacity have been investigated at the temperature of 274.15 K and the initial pressure of 5.0 MPa.g. The induction time of CO2 hydrate formation was remarkably shortened to 12.5 min in the presence of 0.005 wt% MWNTs nanoparticles. The high thermal conductivity and heat capacity of MWNTs nanoparticles presented better heat transfer, and large surface area provided more suitable sites for heterogeneous nucleation of CO2 hydrate.  相似文献   

19.
A series of solid amine adsorbents were prepared by the template method with ion-exchange resin (D001) as the carrier and polyethyleneimine (PEI) as the modifier. The absorbents were characterized by energy disperse spectroscopy (EDS), scanning electron microscope (SEM), N2 adsorption–desorption, Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) techniques. The effects of PEI loading, adsorption temperature and influent velocities on CO2 adsorption capacity in a fixed-bed reactor were investigated. The results show that the solid amine adsorbent prepared by the template method had a better PEI dispersion, stability and CO2 adsorption capacity. The maximum CO2 adsorption capacity was 3.98 mmol·g?1 when PEI loading was 30%, the adsorption temperature was 65°C and the influent velocity was 40 mL·min?1. The CO2 adsorption capacity decreased only by 9.50% after 10 cycles of adsorption–desorption tests. The study of kinetics indicates that both chemical adsorption and physical adsorption occurred in the CO2 adsorption process. The CO2 adsorption process included fast breakthrough adsorption and gradually approaching equilibrium stage. The particle internal diffusion process was the control step for CO2 adsorption.  相似文献   

20.
In this study, new equilibrium solubility data for carbon dioxide in aqueous solutions of 2-amino-2-methyl-1-propanol and piperazine (PZ) are provided. The two famous Deshmukh–Mather and Kent Eisenberg thermodynamic models are utilized to predict the CO2 absorption. The experimental data show that the solubility of CO2 decreases as the temperature increases. Our data suggest that the addition of PZ has different effects on CO2 absorption under different partial pressure of the CO2 in the gas stream. For high partial pressure, the addition of PZ promotes the absorption performance. However, at low CO2 partial pressure, PZ addition results in less saturated CO2 loading. The Deshmukh–Mather model can provide an accurate prediction of the experimental data at high partial pressure of CO2 (i.e. AAD = 3.4%) whereas the modified Kent–Eisenberg model can capture the inverse effects of the PZ at low partial pressure and provides a relatively good approximation of experimental data at low partial pressure (i.e. AAD = 10%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号