首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antioxidative effects of γ‐ and mainly δ‐tocopherol in a multiphase system were hardly considered up to now. The aim of this study was i) to assess the effects and ii) to follow the degradation of α‐, γ‐ and δ‐tocopherol in concentrations of 0.01%, 0.05%, 0.1% and 0.25% during the oxidation of a 10% purified rapeseed oil triacylglycerol‐in‐water emulsion at 40 °C in the dark for 15 wk in a system containing a low oxygen concentration. Oxidation experiments were performed weekly by assessing the formation of hydroperoxides and hexanal, and the stability of the tocopherols was determined using high‐performance liquid chromatography. Storage tests were conducted with and without the addition of 0.01% α, α′‐azoisobutyronitrile (AIBN), which is a known radical initiator. α‐Tocopherol increased the formation of hydroperoxides in both tests as well as the generation of hexanal when the radical initiator was added; furthermore it was the least stable. γ‐Tocopherol delayed the formation of hexanal and prolonged the stability of the emulsion in a dose‐dependant manner. δ‐Tocopherol was the most stable and also the most effective in delaying lipid oxidation in the emulsions. Each concentration that was tested reduced the rate of hydroperoxide and especially hexanal formation. Hexanal was only formed to a slight extent after 15 wk of oxidation in the test with AIBN and the lowest dose of 0.01% δ‐tocopherol. For all tocopherols, strong correlations were found between tocopherol stability and the extent of oxidation. Results suggest that i) mainly δ‐tocopherol, but also γ‐tocopherol even less pronounced, are very good antioxidants in order to stabilize and prolong the shelf life of oil‐in‐water emulsions, ii) the antioxidative effects were intensified with increasing amounts.  相似文献   

2.
The effects of diacylglycerols rich in medium‐ and long‐chain fatty acids (MLCD) on the crystallization of hydrogenated palm oil (HPO) and formation of 10% water‐in‐oil (W/O) emulsion are studied, and compared with the common surfactants monostearoylglycerol (MSG) and polyglycerol polyricinoleate (PGPR). Polarized light microscopy reveals that emulsions made with MLCD form crystals around dispersed water droplets and promotes HPO crystallization at the oil‐water interface. Similar behavior is also observed in MSG‐stabilized emulsions, but is absent from emulsions made with PGPR. The large deformation yield value of the test W/O emulsion is increased four‐fold versus those stabilized via PGPR due to interfacial crystallization of HPO. However, there are no large differences in droplet size, solid fat content (SFC), thermal behavior or polymorphism to account for these substantial changes, implying that the spatial distribution of the HPO crystals within the crystal network is the driving factor responsible for the observed textural differences. MLCD‐covered water droplets act as active fillers and interact with surrounding fat crystals to enhance the rigidity of emulsion. This study provides new insights regarding the use of MLCD in W/O emulsions as template for interfacial crystallization and the possibility of tailoring their large deformation behavior. Practical Applications: MLCD is applied in preparing W/O emulsion. It is found that MLCD forms unique interfacial Pickering crystals around water droplets, which promote the surface‐inactive HPO nucleation at the oil‐water interface. Thus MLCD‐covered water droplets act as active fillers and interact with surrounding fat crystals, which can greatly enhance the rigidity of emulsion. This observation would provide a theoretical reference and practical basis for the application of the MLCD with appreciable nutritional properties in lipid‐rich products such as whipped cream, shortenings margarine, butter and ice cream, so as to substitute hydrogenated oil. MLCD‐stabilized emulsions can also be explored for the development of novel confectionery products, lipsticks, or controlled release matrices.  相似文献   

3.
This study investigates the oxidative stability of sunflower oil body suspensions (10 wt‐% lipid). Two washed suspensions of oil bodies were evaluated over 8 days at three temperatures (5, 25 and 45 °C) against three comparable sunflower oil emulsions stabilized with dodecyltrimethylammonium bromide (DTAB), polyoxyethylene‐sorbitan monolaurate (Tween 20) and sodium dodecyl sulfate (SDS) (17 mM). The development of oxidation was monitored by measuring the presence of lipid hydroperoxides and the formation of hexanal. Lipid hydroperoxide concentrations in the DTAB, SDS and Tween 20 emulsions were consistently higher than in the oil body suspensions; furthermore, hexanal formation was not detected in the oil body emulsions, whereas hexanal was present in the headspace of the formulated emulsions. The reasons for the extended resistance to oxidation of the oil body suspensions are hypothesized to be due to the presence of residual seed proteins in the continuous phase and the presence of a strongly stabilized lipid‐water interface.  相似文献   

4.
Phospholipids have been reported to inhibit lipid oxidation in bulk oils, but very little is known about their influence on oxidation in oil-in-water emulsions. In the present study, the impact of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) on lipid oxidation was studied in 1% stripped soybean oil-in-water (O/W) emulsions as a function of DOPC concentration and pH (3 and 7). At pH 7.0, DOPC inhibited lipid oxidation in O/W emulsions, while DOPC was prooxidative at pH 3.0. DOPC did not affect emulsion droplet charge or size at either pH 3.0 or 7.0. The antioxidant activity at pH 7.0 was observed in a series of phospholipids (PL) that varied in fatty acid unsaturation level and chain length as well as type of phosphate head group. Overall, phosphatidylcholine with either oleic or palmitic acid were the most effective at inhibiting lipid hydroperoxide and hexanal formation of all of the PL tested. Antioxidant mechanism of PL could not be ascribed to their ability to decompose lipid hydroperoxides. It might be possible that, at pH 7.0, the PL antioxidant activity is related to their ability to form structures within the lipid phase of the emulsions droplets or to chelate metals.  相似文献   

5.
The accurate prediction of the viscosity of emulsions is highly important for oil well exploitation. Commonly used models for predicting the viscosity of water‐in‐oil (W/O) emulsions composed by two or three factors cannot always fit well the viscosity of W/O emulsions, especially in the case of non‐Newtonian W/O emulsions. An innovative and comprehensive method for predicting the viscosity of such emulsions was developed based on the Lederer, Arrhenius, and Einstein models, using experimental data. Compared with the commonly applied W/O emulsion viscosity models, the proposed method considers more factors, including temperature, volume fraction of water, shear rate, and viscosity of the continuous (oil) and dispersed phase (water). Numerous published data points were collected from the literature to verify the accuracy and reliability of the method. The calculation results prove the high accuracy of the model.  相似文献   

6.
The effects of low concentrations of β-carotene, α-, and γ-tocopherol were evaluated on autoxidation of 10% oil-in-water emulsions of rapeseed oil triacylglycerols. At concentrations of 0.45, 2, and 20 μg/g, β-carotene was a prooxidant, based on the formation of lipid hydroperoxides, hexanal, or 2-heptenal. In this emulsion, 1.5, 3, and 30 μg/g of γ-tocopherol, as well as 1.5 μg/g of α-tocopherol, acted as antioxidants and inhibited both the formation and decomposition of lipid hydroperoxides. Moreover, at a level of 1.5 μg/g, γ-tocopherol was more effective as an antioxidant than α-tocopherol. At levels of 0.5 μg/g, both α- and γ-tocopherol significantly inhibited the formation of hexanal but not the formation of lipid hydroperoxides. Oxidation was effectively retarded by combinations of 2 μg/g β-carotene and 1.5 μg/g γ- or α-tocopherol. The combination of β-carotene and α-tocopherol was significantly better in retarding oxidation than α-tocopherol alone. While γ-tocopherol was an effective antioxidant, a synergistic effect between β-carotene and γ-tocopherol could not be shown. The results indicate that there is a need to protect β-carotene from oxidative destruction by employing antioxidants, such as α- and γ-tocopherol, should β-carotene be used in fat emulsions.  相似文献   

7.
Recent research has shown that the oxidative stability of oil‐in‐water emulsions is affected by the type of surfactant used as emulsifier. The aim of this study was to evaluate the effect of real food emulsifiers as well as metal chelation by EDTA and pH on the oxidative stability of a 10% n‐3‐enriched oil‐in‐water emulsion. The selected food emulsifiers were Tween 80, Citrem, sodium caseinate and lecithin. Lipid oxidation was evaluated by determination of peroxide values and secondary volatile oxidation products. Moreover, the zeta potential and the droplet sizes were determined. Tween resulted in the least oxidatively stable emulsions, followed by Citrem. When iron was present, caseinate‐stabilized emulsions oxidized slower than lecithin emulsions at pH 3, whereas the opposite was the case at pH 7. Oxidation generally progressed faster at pH 3 than at pH 7, irrespective of the addition of iron. EDTA generally reduced oxidation, as evaluated by volatiles formation in all emulsions, irrespective of pH and emulsifier type, except in the lecithin and caseinate emulsions where a pro‐oxidative effect was observed for some volatiles. The different effects of the emulsifier types could be related to their ability to chelate iron, scavenge free radicals, interfere with interactions between the lipid hydroperoxides and iron as well as to form a physical barrier around the oil droplets.  相似文献   

8.
This work shows the formation of a high internal phase ratio oil‐in‐water (O/W) emulsion using a new type of a two‐rod batch mixer. The mixture components have sharply different viscosities [1/3400 for water‐in‐oil (W/O)], similar densities (1/0.974 for W/O), and an O/W ratio of 91% (wt/wt). The simple design of this mixer leads to a low‐energy process (106 < energy density [J m?3] < 107), characterized by low rotational speed and laminar flow. The droplet size distribution during the emulsification was investigated according to different physical and formulation parameters such as stirring time (few minutes < t < 1 h), rotational speed (60 < Ω < 120 rpm), surfactant type (Triton X‐405 and X‐100), concentration (from 1 to 15.9 wt % in water), and salt addition (30 g/L). We show that all studied parameters allow a precise control of the droplet size distribution and the rheology. The resulting emulsions are unimodal and the mean droplet diameter is between 30 μm and 8 μm. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

9.
Amongst oilseeds, rapeseed and mustard are rich sources of phenolic compounds, which also prominent in the by‐products of their respective oil processing or in commercial rapeseed and mustard press cakes. These cakes are rich sources of sinapic acid derivatives, which could be extracted as free sinapic acid or sinapine, the choline ester of sinapic acid. Sinapic acid is a widely investigated antioxidative compound. However, the main compound in the press cakes is present as sinapine. Investigations on the free‐radical‐scavenging activity of sinapic acid and sinapine indicate that sinapine had a significant but lower activity as compared to sinapic acid. Apart from this, sinapic acid, sinapine and different tocopherols were compared as antioxidants for inhibition of the formation of lipid oxidation products in purified rapeseed oils. The oxidation at 40 °C was monitored by the formation of hydroperoxides and propanal. The experiments indicate that in contrast to tocopherol mixtures addition of sinapic acid causes increasing inhibition of hydroperoxide formation when enhancing the concentration from 50 to 500 μmol/kg oil. Sinapine was not able to inhibit the formation of hydroperoxides, compared to sinapic acid. This indicates that sinapic acid‐rich extracts, as compared to sinapine‐rich fractions, could better inhibit the lipid oxidation in bulk lipid systems.  相似文献   

10.
Water‐in‐oil (W/O, 30:70) emulsions were prepared with phosphatidylcholine‐depleted lecithin [PC/(PI,PE) = 0.16] or polyglycerol polyricinoleate (PGPR) as emulsifying agents by means of pressure homogenization. The effect of lipid type (medium‐chain triacylglycerols, sunflower, olive, butter oil, or MCT‐oil/vegetable fat blends) was investigated in relation to particle size distribution, coalescence stability and the sedimentation of the water droplets. A significant correlation (p <0.05) was observed between the interfacial pressure caused by the addition of lecithin to the pure lipids and the specific surface area of the emulsion droplets (rs = 0.700), and between the viscosity of the lipids used as the continuous phase (reflecting the fatty acid composition) and the specific surface area of the emulsion droplets (rs = 0.8459) on the other hand. Blends of vegetable fat and MCT‐oil led to reduced coalescence stability due to the attachment of fat crystals to the emulsion droplets. Lecithin‐stabilized W/O emulsions showed significantly higher viscosities compared to those stabilized with PGPR. It was possible to adjust the rheological properties of lecithin‐stabilized emulsions by varying the lipid phase.  相似文献   

11.
In this work, the ability of pine bark procyanidins to hinder oxidation in bulk corn oil and corn oil‐in‐water‐emulsion has been investigated. A preliminary characterisation of the obtained aqueous (AF) and organic (OW) fractions and subfractions suggested a very polar character and showed that both fractions possess remarkable antioxidant activity when minimum concentrations of 2 mg/mL are used. OW fractions and subfractions derived from both pine varieties were able to inhibit oxidation in oils. More specifically, two organic subfractions were the most efficient for retarding the degradation process, with levels of 62% and 50% after 8 days of treatment, respectively. Organic subfractions obtained from both varieties of pine also rendered possible inhibition levels in oil‐in‐water‐emulsions up to 80% after 4 days of oxidation, more than 3 times higher than the levels provided by tocopherol, a well‐known model commercial antioxidant, which confirms the excellent antioxidant potential of procyanidins from pine bark. Practical application: Lipid deterioration leads to losses in quality and nutritional value and to the development of off‐flavours in many foodstuffs. One way to overcome this drawback is by using antioxidants of natural origin, which is a subject of a great scientific and industrial interest, reflected by the growing number of papers and patents published during the last years. Since aqueous and organic fractions obtained from Pinus pinaster and Pinus radiata bark turned out to be an adequate source of procyanidins in previous investigations of our group, their possible antioxidant role in model lipid systems was investigated. This approach entails also another benefit in terms of waste valorisation, since pine bark is a typical residue of agroforestal industries.  相似文献   

12.
Effects of the alkyl chain length of rosmarinate alkyl esters on the oxidative stability in photosensitized oil-in-water (O/W) emulsions were determined by lipid hydroperoxides and headspace volatile analyses. Antioxidant capacities of 20 μM rosmarinate esters with alkyl chain length of 0, 4, 8, 12, 18, and 20 were tested in O/W emulsion containing stripped soybean oil, Tween 20 as an emulsifier, and riboflavin as a photosensitizer. Synergistic or antagonistic effects of 20 μM α-tocopherol in the presence of rosmarinate alkyl esters were also determined. Samples containing rosmarinate with 4 and 8 alkyl esters showed lower lipid hydroperoxides and headspace volatiles than those without rosmarinate and those with 0, 12, 18, and 20 alkyl esters, which indicates that phenolic free radical scavengers showed antioxidant capacities non-linearly in riboflavin photosensitized O/W emulsions. Antagonistic rather than synergistic effects were observed in all rosmarinate alkyl esters with α-tocopherol in current conditions although rosmarinates with 4, 8, and 12 alkyl esters showed better antioxidant capacities than those with other alkyl chain length. The results of this study clearly showed that rosmarinates need the proper length of non-polar groups to show optimum antioxidant capacities in O/W emulsions with Tween 20 as an emulsifier under riboflavin photosensitization.  相似文献   

13.
The aim of this work was to study the evolution of oxidation and the efficiency of phenolic antioxidants in sunflower oil‐in‐water emulsions containing sodium caseinate and lactose (Cas‐Lac) or stabilized by Tween‐20 (T‐20). Two groups of phenolic antioxidants which are structurally similar were tested, i.e. (1) α‐tocopherol and its water‐soluble analogue, Trolox; and (2) gallic acid and its ester derivatives propyl gallate and dodecyl gallate. Emulsion samples were oxidized at 40 °C and the progress of oxidation was followed through quantitation of oxidized triacylglycerol monomers, dimers and oligomers. Results showed that Cas‐Lac emulsions were more stable to oxidation than T‐20 emulsions. In both types of emulsions, the most protective antioxidants were the compounds of lower polarity, namely, α‐tocopherol and dodecyl gallate. It was also found that substantial amounts of α‐tocopherol coexisted with significant polymerization, which was indicative of the heterogeneity of oxidation, i.e. differences of oxidation rate in oil droplets.  相似文献   

14.
The peroxidation of linoleic acid (LA) in the absence and presence of either Cu(II) ions alone or Cu(II)‐ascorbate combination was investigated in aerated and incubated emulsions at 37°C and pH 7. LA peroxidation induced by either copper(II) or copper(II)‐ascorbic acid system followed pseudo‐first order kinetics with respect to primary (hydroperoxides) and secondary (aldehydes‐ and ketones‐like) oxidation products, detected by ferric‐thiocyanate and TBARS tests, respectively. α‐Tocopherol showed both antioxidant and prooxidant effects depending on concentration and also on the simultaneous presence of Cu(II) and ascorbate. Copper(II)‐ascorbate combinations generally led to distinct antioxidant behavior at low concentrations of α‐tocopherol and slight prooxidant behavior at high concentrations of α‐tocopherol, probably associated with the recycling of tocopherol by ascorbate through reaction with tocopheroxyl radical, while the scavenging effect of α‐tocopherol on lipid peroxidation was maintained as long as ascorbate was present. On the other hand, in Cu(II) solutions without ascorbate, the antioxidant behavior of tocopherol required higher concentrations of this compound because there was no ascorbate to regenerate it. Practical applications: Linoleic acid (LA) peroxidation induced by either copper(II) or copper(II)‐ascorbic acid system followed pseudo‐first order kinetics with respect to primary (hydroperoxides) and secondary (e.g., aldehydes and ketones) oxidation products. α‐Tocopherol showed both antioxidant and prooxidant effects depending on concentration and also on the simultaneous presence of Cu(II) and ascorbate. The findings of this study are believed to be useful to better understand the actual role of α‐tocopherol in the preservation of heterogenous food samples such as lipid emulsions. Since α‐tocopherol (vitamin E) is considered to be physiologically the most important lipid‐soluble chain‐breaking antioxidant of human cell membranes, the results can be extended to in vivo protection of lipid oxidation.  相似文献   

15.
This paper describes the preparation characteristics of food‐grade soybean oil‐in‐water (O/W) emulsions using a novel straight‐through extrusion filter, named a silicon straight‐through microchannel (MC). Polyglycerol fatty acid ester (PGFE), polyoxyethelene sorbitan monolaurate (Tween 20), and sucrose fatty acid ester were tested as emulsifiers. Optical observations of the emulsification process exhibited that monodisperse oil droplets were stably formed from an oblong straight‐through MC for PGFE and Tween 20. The effect of the emulsifier on the straight‐through MC emulsification behavior is discussed. The selected PGFE‐ and Tween 20‐containing systems enabled us to prepare monodisperse O/W emulsions with droplet diameters of 38—39 μm and coefficients of variation below 3% using an oblong straight‐through MC with a 16 μm‐equivalent channel diameter.  相似文献   

16.
In order to clarify the prooxidative role of carotenoids on the oxidation of unsaturated lipids this study examined the effects of β‐carotene and its oxidative breakdown product, retinal, on primary oxidation products of linoleic acid methyl ester. Formation as well as isomer distribution of methyl linoleate hydroperoxides were followed by highperformance liquid chromatography. Oxidation of methyl linoleate without or with added β‐carotene (5, 20, 200 μg/g) or retinal (7, 18, 180, 360 μg/g) was carried out in the dark under air at 40 °C. Both β‐carotene and retinal promoted the formation of hydroperoxides and thus acted as prooxidants in a concentration‐dependent way. Moreover, carotenoids also had an effect on the isomeric distribution of primary oxidation products as high contents of retinal increased the portion (%) of trans,trans‐hydroperoxides. Being thermodynamically more stable isomers than cis,trans‐isomers of hydroperoxides they are known to accumulate during later phases of oxidation or during hydroperoxide decomposition. The results showed that β‐carotene and retinal were not effective hydrogen donors. These findings raise the question that carotenoids and their oxidative breakdown products enhance the decomposition of lipid hydroperoxides and this effect partially explains the prooxidative effect of carotenoids.  相似文献   

17.
The effect of alpha‐tocopherol (alpha‐T) and quercetin on the formation of hydroperoxides of linoleic and linolenic acids during autoxidation at 60 ± 1 °C was investigated. Three isomers of hydroperoxides were detected using HPLC. Of isomers of linoleic acid hydroperoxides, 13‐hydroperoxy‐octadecadienoic acid trans‐trans (13‐HPODE t‐t), 9‐HPODE cis‐trans (9‐HPODE c‐t) and 9‐HPODE trans‐trans (9‐HPODE t‐t) were identified, constituting 64, 19 and 17% of the total amount, respectively. For linolenic acid, the components 13‐hydroperoxy‐octadecatrienoic acid trans‐trans (13‐HPOTE t‐t), 9‐HPOTE c‐t and 9‐HPOTE t‐t contributed 7, 33 and 60% to the total, respectively. The different dominant hydroperoxide isomers detected in linoleic and linolenic acids during oxidation are related to their chemical structure and the microenvironment of emulsion droplets. The ratios between specific isomers for both fatty acid hydroperoxides did not change during oxidation with or without antioxidants. Alpha‐T effectively inhibited the oxidation of fatty acids and reduced the formation of hydroperoxides. The total amount of the hydroperoxides decreased along with the increase in the concentration of alpha‐T, 1–40 µM. Quercetin inhibited the oxidation of both fatty acids at similar efficiency only at 40 µM concentration. A synergistic antioxidant effect of quercetin with alpha‐T in a binary system on both fatty acids was observed.  相似文献   

18.
Lipid oxidation products can arise when oils are subjected to high temperature and exposed to oxygen. Many of these oxidation products have higher polarity than the original triacylglycerols due to the incorporation of oxygen. These polar oxidation products could have a negative impact on oxidative stability by acting as prooxidants. In this study, the influence of polar lipid oxidation products on the oxidative stability of bulk oils and oil-in-water emulsions was investigated. Polar compounds were isolated from used frying oil by silica gel column chromatography. They were added to bulk stripped corn oil (with/without reverse micelles formed by dioleoylphosphatidylcholine, DOPC) and oil-in-water (O/W) emulsion to evaluate their prooxidative activity. Polar compounds increased lipid oxidation in bulk oil with and without DOPC. The presence of DOPC reverse micelles decreased the prooxidant activity of the polar oxidation products. On the other hand, there was no significant effect of the polar compounds on oxidation of O/W emulsions. To gain a better understanding of the polar compounds responsible for the prooxidant effect, linoleic acid and linoleic hydroperoxide were added into bulk oil at the same concentration as those in the polar fraction of the frying oil. However, they did not show the same prooxidative activity compared to oil with the polar fraction.  相似文献   

19.
The influence of the variation of different parameters on the particle size distribution and solid fat content (SFC) of water‐in‐oil emulsions was studied. The use of solid fat instead of liquid oil, higher polyglycerol polyricinoleate (PGPR) concentration, or higher homogenization energy led to smaller mean particle sizes. The decrease of the emulsifier/water ratio turned the particle size distribution of the emulsions from bimodal to trimodal. The increase of PGPR concentration increased the SFC of the fat in the absence of water, but it did not produce the same effect in the emulsion. This result suggested that the presence of dispersed aqueous phase prevented the modifying action of the emulsifier on the crystallization of the continuous lipid phase. The experimentation indicated that the adsorption of the surfactant at the interface would reduce its availability to affect crystallization in bulk fat, as the SFC in lipid phase decreased with increasing interfacial area.  相似文献   

20.
In this work, water-in-oil emulsions (W/O) and ethanol-in-oil emulsions (E/O) emulsions were prepared successfully by membrane emulsification. The emulsifiers selected were PGPR and MO-750 for the W/O and E/O emulsions, respectively. For W/O emulsions prepared with an oil pre-filled membrane, the dispersed flux was lower and the droplet size sharper than that obtained with a water pre-filled membrane. On the contrary, for E/O emulsions prepared with the membrane pre-filled with oil, the dispersed phase (ethanol) rapidly pushed out the oil from the membrane pores. Therefore, the pre-treatment of the membrane had almost no effect on the dispersed phase flux and on the droplet size. The droplet size distribution of the E/O emulsion was close to that obtained with a classical homogenizer. The dispersed phase fluxes were high and no fouling was observed for our experimental conditions (1.6 l emulsion, 10 wt% ethanol). These results confirm that membrane emulsification could be an interesting alternative for the preparation of E/O emulsions for the purpose of biodiesel fuels, considering the scale-up ability of membranes and their potentiality for industrial processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号