首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Hazelnut (Corylus avellana L.) oil was extracted with compressed carbon dioxide in the temperature range of 308—321 K and in the pressure range of 18—23.4 MPa. In addition the influence of the superficial velocity, within a tubular extractor was studied. Physical and chemical characteristics of the oil were obtained. The results including contents of free fatty acids, sterols, triacylglycerols and tocopherols were compared with those obtained when n‐hexane was used as solvent. No significant differences were found when the oils extracted by both methods were analysed. The main fatty acid was the oleic acid (83—85%), followed by linoleic acid (6—8%) and palmitic acid (5—6%). The main triglyceride found in hazelnut oils was the trioleylglycerol (OOO) (63.4—69.6%), followed by the linoleyl‐dioleylglycerol (LOO) (11.6—15.5%) and palmitoyl‐dioleylglycerol (POO) (9.9—10.4%). In terms of sterols, the main component was β‐sitos‐terol (∼83%) followed by campesterol (∼6%). The amount of cholesterol was very low (∼0.2%). The CO2 extracted oil contained about 17% more tocopherols (458.7 μg/g oil) than the oil extracted by n‐hexane (382.8 μg/g). Oxidative stability was studied by using the induction time determined by the Rancimat method. The oil obtained by supercritical fluid extraction (SFE) was slightly more protected against oxidation (8.7 h for SFE extracted oil and 6.7 h for the hazelnut oil extracted with n‐hexane). Both oils presented high stability index values (7.81 for the oil extracted by n‐hexane and 8.7 for the oil extracted with supercritical CO2). Oil extracted by supercritical CO2 was clearer than the one extracted by n‐hexane, showing some refining. Besides, the acidity index was 1.6 for the n‐hexane extracted oil and 0.9 for the oil extracted with supercritical carbon dioxide. The central composite non‐factorial design was used to optimise the extraction conditions, using the Statistica, version 5 software (Statsoft). The best results, in terms of recoveries of hazelnut oil by SFE, were found at 22.5 MPa, 308 K and superficial velocity of 6.0 × 10—4 ms—1.  相似文献   

2.
Acorn fruit oils from two species of oak, Quercus rotundifolia L. (holm‐oak) and Quercus suber L. (cork‐oak), were extracted by n‐hexane. The acorn fruit of Quercus rotundifolia L. was also extracted by supercritical CO2 at 18 MPa and 313 K, a superficial velocity of 2.5 × 10?4 ms?1, and a particle size diameter of 2.7 × 10?4 m. The oils were characterised in terms of fatty acids, triglycerides, sterols, tocopherols, and phospholipids. The main fatty acid in both fruit species was oleic acid (about 65%), followed by linoleic acid (about 16.5–17%) and palmitic acid (about 12.1–13.4%). The main triglyceride found in acorn oils was the OOO (oleic, oleic, oleic) triglyceride (33–38%), followed by the POO (palmitic, oleic, oleic) triglyceride (12.6–18.2%). In terms of sterols, the main component in acorn oils of both species was β‐sitosterol (83.5–89%), followed by stigmasterol (about 3%). However, in Quercus suber L., acorn oil was found to consist to 10.2% of campesterol. The amount of cholesterol was low (0.27% for the Quercus rotundifolia L. oil extracted by supercritical fluid extraction, and 0.18% for the oil extracted by n‐hexane). The Quercus suber L. acorn oil presented 0.1% of cholesterol. The total amount of tocopherols in Quercus rotundifolia L. acorn oils was almost the same when the oil was extracted by n‐hexane (973 mg/kg oil) or by supercritical CO2 (1006 mg/kg oil). The Quercus suber L. acorn oil presented a high value of total tocopherols (1486 mg/kg oil). The supercritical CO2 did not extract the phospholipids. The amount of phospholipids was very similar for both species of oak acorn oils extracted by n‐hexane. Oxidative stability was also studied, by using the peroxide value and the Rancimat method, revealing that all the oils were significantly protected against oxidation. The influence of storage, under several conditions, on the oxidative stability was also studied. The Quercus rotundifolia L. oil extracted by n‐hexane was better protected against oxidation after a few days of storage at 60 °C.  相似文献   

3.
In the present work, high‐pressure extraction of borage (Borago officinalis L.) and evening primrose (Oenothera biennis L.) seed oil, containing the valuable γ‐linolenic acid (GLA), has been investigated. Extraction was performed with supercritical carbon dioxide on a semi‐continuous flow apparatus at pressures of 200 and 300 bar, and at temperatures of 40 and 60 °C. A constant flow rate of carbon dioxide in the range from 0.17 to 0.20 kg/h was maintained during extraction. The extraction yields obtained using dense CO2 were similar to those obtained with conventional extraction using hexane as solvent. The composition of extracted crude oil was determined by GC analysis. The best results were obtained at 300 bar and 40 °C for both seed types extracted, where the quality of oil was highest with regard to GLA content. The evening primrose seed oil extracted with supercritical fluid extraction was particularly rich in unsaturated fatty acids: up to 89.7 wt‐% of total free fatty acids in the oil. The dynamic behavior of the extraction runs was analyzed using two mathematical models for describing the constant rate period and the subsequent falling rate period. Based on the experimental data, external mass transfer coefficients, diffusion coefficients and diffusivity in solid phase were estimated. Results showed good agreement between calculated and experimental data.  相似文献   

4.
Krill oil including astaxanthin was extracted using supercritical CO2 and hexane. The effects of different parameters such as pressure (15 to 25MPa), temperature (35 to 45 °C), and extraction time, were investigated. The flow rate of CO2 (22 gmin−1) was constant for the entire extraction period of 2.5 h. The maximum oil yield was found at higher extraction temperature and pressure. The oil obtained by SC-CO2 extraction contained a high percentage of polyunsaturated fatty acids, especially EPA and DHA. The acidity and peroxide value of krill oil obtained by SC-CO2 extraction were lower than that of the oil obtained by hexane. The SC-CO2 extracted oil showed more stability than the oil obtained by hexane extraction. The amount of astaxanthin in krill oil was determined by HPLC and compared at different extraction conditions. The maximum yield of astaxanthin was found in krill oil extracted at 25 MPa and 45 °C.  相似文献   

5.
Supercritical carbon dioxide extraction of evening primrose oil   总被引:5,自引:0,他引:5  
The oil extracted from the seeds ofOenothera biennis L. (evening primrose) is a major commercial source of gamma-linolenic acid, a fatty acid having potential therapeutic value in the treatment of several diseases. This fatty acid is prone to oxidation and thermal rearrangement; therefore, the conventional recovery of the oil via mechanical expression and hexane extraction must be carried out under very mild and controlled conditions. In this study, supercritical fluid extraction with carbon dioxide has been employed as an alternative method to recover evening primrose oil (EPO). Extractions were performed over the pressure range of 20–70 MPa and at temperatures from 40 to 60°C, with a CO2 mass flow rate of 18 g/min. The experimental data permitted the determination of EPO solubility in supercritical CO2 at the tested extraction conditions. Supercritical fluid Chromatographic analysis of fractions collected during the extraction showed a subtle shift in the triglyceride composition. Fatty acid methyl ester analysis on similar fractions indicated that the fatty acid content was invariant with respect to extraction time. The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

6.
Polar lipids of crude oat oil were investigated. Oat oil was separated from oats by extraction with isopropanol. Polar lipids were fractionated from crude oil by supercritical CO2-extraction, by ultrafiltration in hexane and by water degumming. The polar fraction from CO2-extraction had the highest phospholipid and lowest tocopherol content. The polar fractions made by different methods possessed similar antioxidative properties. However, the polar lipids from oats were more powerful antioxidants than those made from soybean or rapeseed oil.  相似文献   

7.
Plant materials have been used in different fields such as therapeutics, cosmetics, and energy for ages. Several studies have investigated seeds, whether common or not, in order to ensure a better valuation of natural resources. Among these, Pistacia atlantica Desf. has been the subject of several works on its characterization and valorization. Among the current trends in sustainable development and environmental protection, valorizing natural wild plants via green chemistry has become prevalent. One of these plants, Pistacia atlantica Desf., is a tree that grows in arid and semi-arid areas, notably in Tunisia, and produces seeds rich in oil. In this study extracting the oil from its seeds is tried by three methods (supercritical carbon dioxide (CO2), pressure, and hexane), and the efficiency of these extraction processes is compared in order to obtain the best yield and maximize its valorization in a variety of industrial fields. The obtained oil is found to be rich in polyunsaturated fatty acids, namely linoleic and oleic acids, with a similar acidic composition among all extraction methods. The tocopherol composition of the oil is determined using high performance liquid chromatography. The total polyphenol content is determined using the Folin-Ciocalteu colorimetric analysis method. The results show that the seed oil of Pistacia atlantica Desf. extracted by supercritical CO2 gives the highest extraction yield (25%) and the lowest acidity and peroxide values with a high degree of oxidation at 232 and 270 nm. This method also gives the highest content of alpha, gamma, and delta tocopherol as well as total phenolic content compared to the other extraction methods. The composition of chlorophylls and carotenes in the seed oil of Pistacia atlantica Desf. is determined. Besides, the analysis of the sterol composition reveals that β-sitosterol is still prevailing. Among all the tested extracts, the supercritical CO2 extract demonstrates the best antioxidant performance against the tested radicals. The oil extracted by supercritical carbon dioxide (CO2) is of a higher quality compared to that extracted by pressure and by hexane. Practical applications : The Pistacia atlantica Desf. oil exhibits interesting physicochemical and biological characteristics. The type of extraction affects the quality of the major and minor components in the seeds. However, the supercritical CO2 method produces a better oil quality with the presence of antioxidants such as tocopherols and polyphenols. In fact, it is found that the oil extracted by the three methods has an important sterolic profile with the predominance of β-sitosterol. According to the classification of vegetable oils, unsaturated fatty acids of atlas pistachio oil can be categorized as oleo linoleic oil, which enhances its nutritional value. Having these characteristics, the use of this oil can be considered in agrifood products.  相似文献   

8.
The objective of this study was to measure and compare differences in oxidized products of oil extracted from unoxidized and oxidized walnuts using five different extraction methods: (i) mechanical pressing, or solvent extraction with (ii) hexane, (iii) methylene chloride, (iv) chloroform/methanol, or (v) supercritical carbon dioxide (SC−CO2). Of the extraction methods evaluated, only chloroform/methanol and methylene chloride provided reasonable results for all parameters measured (total lipid yield, FA profile, PV, conjugated dienes, FFA content, and volatile content); however, chloroform/methanol extracted significantly greater levels of volatile compounds. The SC−CO2 extraction with purified gas was simple and accurate for all data except collection of volatile compounds, as these materials are lost during the lipid extraction. Pressing was neither quantitative nor qualitative, and hexane extraction retrieved significantly lower levels of volatiles than the other methods, except for SC−CO2.  相似文献   

9.
Total yields and compositions of sorghum dried distillers grains with solubles (DDGS) lipids obtained by supercritical CO2 (SC‐CO2) extraction were compared with those obtained by recirculated solvent extraction (RSE) with hexane. The total yield of lipids obtained by SC‐CO2 extraction at 27.5 MPa and 70 °C was 150 g lipids/kg DDGS, while the yield obtained by RSE with hexane at 69 °C was only 85 g lipids/kg DDGS. The contents of four high‐value compounds, i.e., policosanols, phytosterols, free fatty acids (FFA) and tocols, in the lipids obtained by SC‐CO2 extraction were 31.2, 15.6, 155.3 and 0.50 mg/g at 27.5 MPa and 70 °C, compared to 26.6, 9.6, 57.3 and 0.03 mg/g for RSE with hexane at 69 °C. The profiles of phytosterols and FFA in the sorghum DDGS lipids were relatively independent of the extraction methods and operating conditions.  相似文献   

10.
The extraction of wheat germ oil by liquid and supercritical CO2 is described from the point of view of both operative method and pretreatment of raw material. The best conditions for wheat germ oil extraction are: pressure, 150 bar; temperature, 40°C; and solvent flow rate, 1.5 L/min at standard temperature and pressure. The yields and fatty acid compositions obtained are very similar to those resulting from the conventional extraction process using hexane as solvent (8.0 wt%), although a higher-quality oil is obtained by using CO2 as solvent (free fatty acids, 12.4%; tocopherol content, 416.7 mg tocopherol/g wheat germ oil). These factors lead to the conclusion that the extraction process using CO2 could be economically competitive with the conventional process, since it considerably simplifies the oil refinement stages and completely eliminates the solvent distillation stage, which are the most costly processing steps in terms of energy consumption.  相似文献   

11.
Spearmint oil (essential oil of Mentha spicata) was extracted from Turkish mint-plant leaves using supercritical CO2 in a basket-type extractor. Effects of temperature, pressure, extraction time, amount of CO2, and entrainer (ethanol) concentration on composition of essential-oil extracts and oil yield, relative to hydro-distillation, were investigated. Relative yields were as high as 80%. Monoterpenes fraction in extracts was inversely correlated with relative oil yields. Monoterpenes were preferentially extracted by CO2 due to their high vapor pressure, low molar mass and low polarity. Supercritical extraction presented advantages over the conventional hydro-distillation by yielding extracts lower in monoterpenes fraction and by enabling high yields at temperatures safe for the heat-sensitive essential oil.  相似文献   

12.
Extraction of rice brain oil using supercritical carbon dioxide and propane   总被引:1,自引:0,他引:1  
Extraction of rice bran lipids was performed using supercritical carbon dioxide (SC−CO2) and liquid propane. To provide a basis for extraction efficiency, accelerated solvent extraction with hexane was performed at 100°C and 10.34 MPa. Extraction pressure was varied for propane and SC−CO2 extractions. Also, the role of temperature in SC−CO2 extraction efficiency was investigated at 45,65, and 85°C. For the SC−CO2 experiments, extraction efficiencies were proportional to pressure and inversely proportional to temperature, and the maximal yield of oil achieved using SC−CO2 was 0.222±0.013 kg of oil extracted per kg of rice bran for conditions of 45°C and 35 MPa. The maximal yield achieved with propane was 0.224±0.016 kg of oil per kg of rice bran at 0.76 MPa and ambient temperature. The maximum extraction efficiencies of both SC−CO2 and propane were found to be significantly different from the hexane extraction baseline yield, which was 0.261±0.005 kg oil extracted per kg of rice bran. A simulated economic analysis was performed on the possibility of using SC−CO2 and propane extraction technologies to remove oil from rice bran generated in Mississippi. Although the economic analysis was based on the maximal extraction efficiency for each technology, neither process resulted in a positive rate of return on investment.  相似文献   

13.
Camelina sativa seed is an underutilized oil source that attracts a growing interest, but it requires more research on its composition and processing. Its high omega‐3 content and growing demand for clean food processing technologies make conventional oil extraction less attractive. In this study, the effect of extraction methods on the bioactive lipid composition of the camelina seed lipid was investigated, and its bioactive lipid composition was modified at the extraction stage using ethanol‐modified supercritical carbon dioxide (SC‐CO2). Ethanol‐modified SC‐CO2 extractions were carried out at varying temperatures (50 and 70 °C), pressures (35 and 45 MPa), and ethanol concentrations (0–10%, w/w), and were compared to SC‐CO2, cold press, and hexane extraction. The highest total lipid yield (37.6%) was at 45 MPa/70 °C/10% (w/w) ethanol. Phospholipids and phenolic content increased significantly with ethanol‐modified SC‐CO2 (p < 0.05). SC‐CO2 with 10% (w/w) ethanol concentration selectively increased phosphatidylcholine (PC) content. Apparent solubility of camelina seed lipids in SC‐CO2, determined using the Chrastil model, ranged from 0.0065 kg oil/kg CO2 (35 MPa/50 °C) to 0.0133 kg oil/kg CO2 (45 MPa/70 °C). Ethanol‐modified SC‐CO2 extraction allowed modification of the lipid composition that was not possible with the conventional extraction methods. This is a promising green method for extraction and fractionation of camelina seed lipids to separate and enrich its bioactives.  相似文献   

14.
Oil and phenolics were extracted from Descurainia sophia (Sophia) seeds by a supercritical CO2 system. Extractions were conducted in two sequential steps, first using 100 % CO2 and then adding 10 % ethanol as co‐solvent. The extracts were collected in each step using two separate collectors operating at different pressures. The extraction run was 3 and 4 h for the first period, and 2 h for the second period. The majority of the oil was collected in the first extraction period while phenolic compounds were obtained in the second extraction period. A combined mode of static/dynamic extraction (3 h running and 1 h soaking in CO2) was also used in the first extraction period, which enhanced the total extraction yield (29.3 ± 0.5 %) and was comparable to the 4 h extraction yield (31.4 ± 0.1 %). The total fatty acid (FA) content of oil in collector 1 (0.94 g) was nearly twice that in collector 2 (0.60 g). The oil contained 14 FAs with α‐linolenic being predominant (48.5 %), with a total 91.1 % unsaturated FAs, a ω3/ω6 ratio of 2.7, and an erucic acid content of 6.2 %. More than 10 phenolic compounds were detected by HPLC in the Sophia seed extracts of which sinapic acid was the dominant compound. Sophia seed extracts showed high levels of antioxidant activity. These results suggest that Sophia seed oil and phenolics have the potential for functional food and pharmaceutical applications.  相似文献   

15.
Extraction of cottonseed lipids with supercritical carbon dioxide (SC-CO2) was conducted with and without a cosolvent, ethanol or 2-propanol (IPA). At 7000 psi and 80°C, the reduced pressure, temperature and density of SC-CO2 was at 6.5, 1.17 and 1.85, respectively; the specific gravity was 0.87. Under these conditions, CO2 is denser than most liquid extraction agents such as hexane, ethanol and IPA. The extraction of cottonseed with SC-CO2 gave a yield of more than 30% (moisture-free basis). This is comparable to yields obtained by the more commonly used solvent, hexane. The crude cottonseed oil extracted by SC-CO2 was visually lighter than refined cottonseed oil. This was substantiated by colorimetric measurements. No gossypol was detected in the crude oil. However, crude oil extracted by SC-CO2, to which less than 5% of ethanol or IPA as co-solvent was added, containedca. 200 ppm of gossypol, resulting in the typical dark color of cottonseed crude oil with gossypol. CO2 extracted a small amount of cottonseed phosphatides, about one-third of that extracted by pure ethanol, IPA or hexane. A second extraction with 100% ethanol or IPA after the initial SC-CO2 extraction produced a water-soluble lipid fraction that contained a significant amount of gossypol, ranging between 1500 and 5000 ppm. Because pure gossypol is practically insoluble in water, this fraction is believed to be made up of gossypol complexed with polysaccharides and phosphatides. Partially presented at the AOCS 1993 Annual Meeting & Expo in Anaheim, California.  相似文献   

16.
The extraction of rice bran oil using the conventional organic solvent‐based Soxhlet method involves hazardous chemicals, whereas supercritical fluid extraction is a costly high‐temperature operating system. The subcritical carbon dioxide Soxhlet (SCDS) system, which operates at a low temperature, was evaluated for the extraction of rice bran oil in this study. In addition, rice bran that had been subjected to steam or hot‐air stabilization were compared with unstabilized rice bran (control). The yields; contents of tocopherols, tocotrienols and oryzanol; fatty acid profiles; and the oxidative stabilities of the extracted rice bran oils were analyzed. The yields using hexane and SCDS extraction were approximately 22 and 13–14.5 %, respectively. However, oil extracted using the SCDS system contained approximately 10 times more oryzanol and tocol compounds and had lower free fatty acid levels and peroxide values compared with hexane‐extracted oil. Overall, SCDS extraction of steamed rice bran represents a promising method to produce premium‐quality rice bran oil.  相似文献   

17.
The oils from two kinds of pumpkin seeds, black and white ones, were extracted by supercritical CO2 (SC‐CO2). The technological variables for SC‐CO2 extraction were optimized and the resulting oils were analyzed by GC‐MS. As a result, the optimal conditions for SC‐CO2 extraction were as follows: 25~30 MPa, 45 °C, SC‐CO2 flow rate of 30~40 kg/h. The main compounds in the resulting oils were 9,12‐octadecadienoic acid, 9‐octadecenoic acid, stearic acid, palmitic acid for both types of pumpkin seeds, however, the black seed oil contains more unsaturated fatty acids (UFA) than the white seed oil. On the other hand, some compounds including heptadecanoic acid (0.27%), tetracosanic acid (0.1%), 9‐dodecaenoic acid (0.45%) and pentadecenoic acid (0.05%) were found in white seed oil but not in black seed oil; while eicosanic acid (0.05%), 11,14‐eicosadienoic acid (0.2%), 11‐octadecenoic acid (0.06%), 7‐hexadecenoic acid (0.02%) and 1,12‐tridecadiene (0.02%) were only found in black seed oil.  相似文献   

18.
Marine microalgae are recognised as an important renewable source of bioactive lipids with a high proportion of polyunsaturated fatty acids (PUFA), which have been shown to be effective in preventing or treating several diseases. For the extraction of oil from microalgae, supercritical CO2 (ScCO2) is regarded with interest, being safer than hexane and offering a negligible environmental impact, a short extraction time and a high‐quality final product. Whilst some experimental papers are available on the supercritical fluid extraction (SFE) of oil from microalgae, only limited information exists on the kinetics of the process. In such a contest, a mathematical model able to describe the kinetics of the SFE was applied to the recovery with ScCO2 of lipids from Nannochloropsis sp., a marine microalga commonly used in aquaculture and characterised by a lipid fraction with a high PUFA content. The aim of this paper was to examine the effect of operating conditions on the kinetics of the SFE, on process yields and on the fatty acid composition of lipid extracts.  相似文献   

19.
Red pepper oil was extracted using near- and supercritical carbon dioxide. Extraction was carried out at pressures ranging from 10 to 35 MPa and temperatures from 30 to 60 °C, with a CO2 flow rate of 24.01 g/min using a semi-continuous high-pressure extraction apparatus. The duration for extraction was 2 h. The highest oil yield was found at high pressure and temperature. The highest solubility of oil (1.18 mg/g of CO2) was found at 35 MPa and 60 °C. The solubility data of red pepper oil in near- and supercritical CO2 were fitted in Chrastil model. The fatty acid composition of red pepper oil was analyzed by gas chromatography (GC). Linoleic acid was found to be the major fatty acid in the oil. Capsaicin was quantified in different extracts by high performance liquid chromatography (HPLC). The highest capsaicin yield was found at 35 MPa and 60 °C.  相似文献   

20.
The extraction of oil from fungi (Mortierella ramanniana var.angulispora) was studied using carbon dioxide (CO2), nitrous oxide (N2O), trifluoromethane (CHF3) and sulfur hexafluoride (SF6) under supercritical conditions. The oil solubility was highest in SC-N2O followed by SC-CO2, while both SC-CHF3 and SC-SF6 showed poorer solvent power. The recorded oil solubilities at 333 K and 24.5 MPa were 2.3 wt% in N2O, 0.48 wt% in CO2, 0.0099 wt% in CHF3 and 0.0012 wt% in SF6. The oil solubilities in SC-N2O and SC-CO2 were measured over the pressure range 15.7–29.4 MPa and at temperatures ranging from 313–353 K. N2O always showed greater solvent power than did CO2 at the same temperature and pressure. The solvent power of a supercritical fluid increases with density at a given temperature, and increases with temperature at constant density. The change in neutral lipid composition of the extracted oil with the extraction ratio was measured. Free fatty acids or diglycerides were extracted more easily than triglycerides or sterol esters. The change in fatty acid composition was also measured. The proportion of γ-linolenic acid in the extract remained constant throughout the extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号