首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA polymerase β (Pol β) is a frequently overexpressed and/or mutated bifunctional repair enzyme. Pol β possesses polymerase and lyase active sites, that are employed in two steps of base excision repair. Pol β is an attractive therapeutic target for which there is a need for inhibitors. Two mechanistically inspired covalent inhibitors ( 1 , IC50=21.0 μM; 9 , IC50=18.7 μM) that modify lysine residues in different Pol β active sites are characterized. Despite modifying lysine residues in different active sites, 1 and 9 inactivate the polymerase and lyase activities of Pol β. Fluorescence anisotropy experiments indicate that they do so by preventing DNA binding. Inhibitors 1 and 9 provide the basis for a general approach to preparing domain selective inhibitors of bifunctional polymerases. Such molecules could prove to be useful tools for studying the role of wild type and mutant forms of Pol β and other polymerases in DNA repair.  相似文献   

2.
We report on comparative pre-steady-state kinetic analyses of exonuclease-deficient Escherichia coli DNA polymerase I (Klenow fragment, KF-) and the archaeal Y-family DinB homologue (Dbh) of Sulfolobus solfataricus. We used size-augmented sugar-modified thymidine-5'-triphosphate (T(R)TP) analogues to test the effects of steric constraints in the active sites of the polymerases. These nucleotides serve as models for study of DNA polymerases exhibiting both relatively high and low intrinsic selectivity. Substitution of a hydrogen atom at the 4'-position in the nucleotide analogue by a methyl group reduces the maximum rate of nucleotide incorporation by about 40-fold for KF- and about twelve fold for Dbh. Increasing the size to an ethyl group leads to a further twofold reduction in the rates of incorporation for both enzymes. Interestingly, the affinity of KF- for the modified nucleotides is only marginally affected, which would indicate no discrimination during the binding step. Dbh even has a higher affinity for the modified analogues than it does for the natural substrate. Misincorporation of either TTP or T(Me)TP opposite a G template causes a drastic decline in incorporation rates for both enzymes. At the same time, the binding affinities of KF- for these nucleotides drop by about 16- and fourfold, respectively, whereas Dbh shows only a twofold reduction. Available structural data for ternary complexes of relevant DNA polymerases indicate that both enzymes make close contacts with the sugar moiety of the dNTP. Thus, the varied proficiencies of the two enzymes in processing the size-augmented probes indicate varied flexibility of the enzymes' active sites and support the notion of active site tightness being a criterion for DNA polymerase selectivity.  相似文献   

3.
Rev1 is a protein scaffold of the translesion synthesis (TLS) pathway, which employs low-fidelity DNA polymerases for replication of damaged DNA. The TLS pathway helps cancers tolerate DNA damage induced by genotoxic chemotherapy, and increases mutagenesis in tumors, thus accelerating the onset of chemoresistance. TLS inhibitors have emerged as potential adjuvant drugs to enhance the efficacy of first-line chemotherapy, with the majority of reported inhibitors targeting protein-protein interactions (PPIs) of the Rev1 C-terminal domain (Rev1-CT). We previously identified phenazopyridine (PAP) as a scaffold to disrupt Rev1-CT PPIs with Rev1-interacting regions (RIRs) of TLS polymerases. To explore the structure-activity relationships for this scaffold, we developed a protocol for co-crystallization of compounds that target the RIR binding site on Rev1-CT with a triple Rev1-CT/Rev7R124A/Rev3-RBM1 complex, and solved an X-ray crystal structure of Rev1-CT bound to the most potent PAP analogue. The structure revealed an unexpected binding pose of the compound and informed changes to the scaffold to improve its affinity for Rev1-CT. We synthesized eight additional PAP derivatives, with modifications to the scaffold driven by the structure, and evaluated their binding to Rev1-CT by microscale thermophoresis (MST). Several second-generation PAP derivatives showed an affinity for Rev1-CT that was improved by over an order of magnitude, thereby validating the structure-based assumptions that went into the compound design.  相似文献   

4.
The in vitro MutaGen procedure is a new random mutagenesis method based on the use of low-fidelity DNA polymerases. In the present study, this technique was applied on a 2 kb gene encoding amylosucrase, an attractive enzyme for the industrial synthesis of amylose-like polymers. Mutations were first introduced during a single replicating step performed by mutagenic polymerases pol beta and pol eta. Three large libraries (>10(5) independent clones) were generated (one with pol beta and two with pol eta). The sequence analysis of randomly chosen clones confirmed the potential of this strategy for the generation of diversity. Variants generated by pol beta were 4-7-fold less mutated than those created with pol eta, indicating that our approach enables mutation rate control following the DNA polymerase employed for mutagenesis. Moreover, pol beta and pol eta provide different and complementary mutation spectra, allowing a wider sequence space exploration than error-prone PCR protocols employing Taq polymerase. Interestingly, some of the variants generated by pol eta displayed unusual modifications, including combinations of base substitutions and codon deletions which are rarely generated using other methods. By taking advantage of the mutation bias of naturally highly error-prone DNA polymerases, MutaGen thus appears as a very useful tool for gene and protein randomisation.  相似文献   

5.
The thymine-uracil exchange constitutes one of the major chemical differences between DNA and RNA. Although these two bases form the same Watson-Crick base pairs with adenine and are equivalent for both information storage and transmission, uracil incorporation in DNA is usually a mistake that needs to be excised. There are two ways for uracil to appear in DNA: thymine replacement and cytosine deamination. Most DNA polymerases readily incorporate dUMP as well as dTMP depending solely on the availability of the d(U/T)TP building block nucleotides. Cytosine deamination results in mutagenic U:G mismatches that must be excised. The repair system, however, also excises U from U:A "normal" pairs. It is therefore crucial to limit thymine-replacing uracils.dUTP is constantly produced in the pyrimidine biosynthesis network. To prevent uracil incorporation into DNA, representatives of the dUTP nucleotidohydrolase (dUTPase) enzyme family eliminate excess dUTP. This Account describes recent studies that have provided important detailed insights into the structure and function of these essential enzymes.dUTPases typically possess exquisite specificity and display an intriguing homotrimer active site architecture. Conserved residues from all three monomers contribute to each of the three active sites within the dUTPase. Although even dUTPases from evolutionarily distant species possess similar structural and functional traits, in a few cases, a monomer dUTPase mimics the trimer structure through an unusual folding pattern. Catalysis proceeds by way of an SN2 mechanism; a water molecule initiates in-line nucleophilic attack. The dUTPase binding pocket is highly specific for uracil. Phosphate chain coordination involves Mg2+ and is analogous to that of DNA polymerases. Because of conformational changes in the enzyme during catalysis, most crystal structures have not resolved the residues in the C-terminus. However, recent high-resolution structures are beginning to provide in-depth structural information about this region of the protein.The dUTPase family of enzymes also shows promise as novel targets for anticancer and antimicrobial therapies. dUTPase is upregulated in human tumor cells. In addition, dUTPase inhibitors could also fight infectious diseases such as malaria and tuberculosis. In these respective pathogens, Plasmodium falciparum and Mycobacterium tuberculosis, the biosynthesis of dTMP relies exclusively on dUTPase activity.  相似文献   

6.
A thymidine analogue bearing a methyl ester at the C5 position was accepted as a substrate by the thermophilic family B DNA polymerases, KOD Dash, Pwo, and Vent(exo-), to form the corresponding PCR product, but not by the thermophilic family A DNA polymerases, Taq, Tth, and T7 thermosequenase. Modified DNA containing this analogue was prepared by PCR on a large scale with KOD Dash DNA polymerase and 5(methoxycarbonylmethyl)-2'-deoxyuridine 5'-triphosphate as a substrate. The methyl ester of the modified DNA was further allowed to react with tris(2-aminoethyl)amine or histamine by an ester-amide exchange reaction to form the corresponding derivatized DNA bearing a tris(2-aminoethyl)amine or histamine moiety. Hydrolysis of the methyl ester of the modified DNA gave a functionalized DNA bearing an anionic carboxyl group. The derivatized DNA could act as a template for the PCR with KOD Dash DNA polymerase and the natural 2'-deoxythymidine 5'-triphosphate or the modified thymidine analogue as a substrate. The postsynthetic derivatization of the modified DNA may expand the variety of structurally modified DNA produced by PCR.  相似文献   

7.
The selectivity of DNA polymerases for processing the canonical nucleotide and DNA substrate in favor of the noncanonical ones is the key to the integrity of the genome of every living species and to many biotechnological applications. The inborn ability of most DNA polymerases to abort efficient extension of mismatched DNA substrates adds to the overall DNA polymerase selectivity. DNA polymerases have been grouped into families according to their sequence. Within family A DNA polymerases, six motifs that come into contact with the substrates and form the active site have been discovered to be evolutionary highly conserved. Here we present results obtained from amino acid randomization within one motif, motif C, of thermostable Thermus aquaticus DNA polymerase. We have identified several distinct mutation patterns that increase the selectivity of mismatch extension. These results might lead to direct applications such as allele-specific PCR, as demonstrated by real-time PCR experiments and add to our understanding of DNA polymerase selectivity.  相似文献   

8.
An attempt to unify the structure of polymerases   总被引:8,自引:0,他引:8  
With the great availability of sequences from RNA- and DNA-dependentRNA and DNA polymerases, it has become possible to delineatea few highly conserved regions for various polymerase types.In this work a DNA polymerase sequence from bacteriophage SPO2was found to be homologous to the polymerase domain of the Klenowfragment of polymerase I from Escherichia coli, which is knownto be closely related to those from Staphylococcus pneumoniae,Thermits aquaticus and bacteriophages T7 and T5. The alignmentof the SPO2 polymerase with the other five sequences considerablynarrowed the conserved motifs in these proteins. Three of themotifs matched reasonably all the conserved motifs of anotherDNA polymerase type, characterized by human polymerase a. Itis also possible to find these three motifs in monomeric DNA-dependentRNA polymerases and two of them in DNA polymerase ßand DNA terminal transferases. These latter two motifs alsomatched two of the four motifs recently identified in 84 RNA-dependentpolymerases. From the known tertiary architecture of the Klenowfragment of E.coli pol I, a spatial arrangement can be impliedfor these motifs. In addition, numerous biochemical experimentssuggesting a role for the motifs in a common function (dNTPbinding) also support these inferences. This speculative hypothesis,attempting to unify polymerase structure at least locally, ifnot globally, under the pol I fold, should provide a usefulmodel to direct mutagenesis experiments to probe template andsubstrate specificity in polymerases.  相似文献   

9.
We report a combinatorial approach aimed at producing in a single step a large family of nucleoside triphosphate derivatives that could be tested for their ability to be substrates for DNA polymerases. We propose as a unique triphosphate building block a nucleotide with a hydrazine function anchored to an imidazole ring. Condensation between the 5'-triphosphate derivative of 1-(2-deoxy-beta-D-erythro-pentofuranosyl)-imidazole-4-hydrazide (dY(NH(2))TP) and any aldehyde or ketone, followed by reduction of the intermediate hydrazones dXmTP, resulted in the corresponding hydrazides (dXnTP). Following this scheme, a series of aldehydes having various aromatic parts yielded a number of adducts dY(NHR)TP. Vent (exo-) DNA polymerase is found to be able to catalyse the single incorporation of these bulky triphosphate derivatives. Subsequent extensions of the modified pairs with canonical triphosphates resulted mainly in abortive elongations at primer+2, except after the incorporation of dY(NHben)TP and, to a lesser extent, dY(NHphe)TP opposite C. These results illustrate the potential of this parallel synthetic scheme for generating new substrates or inhibitors of replication in a single step.  相似文献   

10.
DNA is being constantly damaged by endo- and exogenous agents such as reactive oxygen species, chemicals, radioactivity, and ultraviolet radiation. Additionally, DNA is inherently labile, and this can result in, for example, the spontaneous hydrolysis of the glycosidic bond that connects the sugar and the nucleobase moieties in DNA; this results in abasic sites. It has long been obscure how cells achieve DNA synthesis past these lesions, and only recently has it been discovered that several specialized DNA polymerases are involved in translesion synthesis. The underlying mechanisms that render one DNA polymerase competent in translesion synthesis while another DNA polymerase fails are still indistinct. Recently two variants of Taq DNA polymerase that exhibited higher lesion bypass ability than the wild-type enzyme were identified by directed-evolution approaches. Strikingly, in both approaches it was independently found that substitution of a single nonpolar amino acid side chain by a cationic side chain increases the capability of translesion synthesis. Here, we combined both mutations in a single enzyme. We found that the KlenTaq DNA polymerase that bore both mutations superseded the wild-type as well as the respective single mutants in translesion-bypass proficiency. Further insights in the molecular basis of the detected gain of translesion-synthesis function were obtained by structural studies of DNA polymerase variants caught in processing canonical and damaged substrates. We found that increased positive charge of the surface potential in the area proximal to the negatively charged substrates promotes translesion synthesis by KlenTaq DNA polymerase, an enzyme that has very limited naturally evolved capability to perform translesion synthesis. Since expanded positively charged surface potential areas are also found in naturally evolved translesion DNA polymerases, our results underscore the impact of charge on the proficiency of naturally evolved translesion DNA polymerases.  相似文献   

11.
The vast majority of DNA polymerases use the complementary templating strand of DNA to guide each nucleotide incorporation. There are instances, however, in which polymerases can efficiently incorporate nucleotides in the absence of templating information. This process, known as translesion DNA synthesis, can alter the proper genetic code of an organism. To further elucidate the mechanism of template-independent DNA synthesis, we monitored the incorporation of various nucleotides at the "blunt-end" of duplex DNA by the high-fidelity bacteriophage T4 DNA polymerase. Although natural nucleotides are not incorporated at the blunt-end, a limited subset of non-natural indolyl analogues containing extensive pi-electron surface areas are efficiently utilized by the T4 DNA polymerase. These analogues possess high binding affinities that are remarkably similar to those measured during incorporation opposite an abasic site. In contrast, the k(pol) values are significantly lower during blunt-end extension when compared to incorporation opposite an abasic site. These kinetic differences suggest that the single-stranded region of the DNA template plays an important role during polymerization through stacking interactions with downstream bases, interactions with key amino acid residues, or both. In addition, we demonstrate that terminal deoxynucleotide transferase, a template-independent enzyme, can efficiently incorporate many of these non-natural nucleotides. However, that this unique polymerase cannot extend large, bulky non-natural nucleotides suggests that elongation is limited by steric constraints imposed by structural features present within the polymerase. Regardless, the kinetic data obtained from using either DNA polymerase indicate that template-independent synthesis can occur without the contributions of hydrogen-bonding interactions and suggest that pi-electron interactions play an important role in polymerization efficiency when templating information is not present.  相似文献   

12.
DNA repair inhibitors are one of the latest additions to cancer chemotherapy. In general, chemotherapy produces DNA damage but tumoral cells may become resistant if enzymes involved in DNA repair are overexpressed and are able to reverse DNA damage. One of the most successful drugs based on modulating DNA repair are the poly(ADP-ribose) polymerase 1 (PARP1) inhibitors. Several PARP1 inhibitors have been recently developed and approved for clinical treatments. We envisaged that PARP inhibition could be potentiated by simultaneously modulating the expression of PARP 1 and the enzyme activity, by a two-pronged strategy. A noncanonical G-quadruplex-forming sequence within the PARP1 promoter has been recently identified. In this study, we explored the potential binding of clinically approved PARP1 inhibitors to the G-quadruplex structure found at the gene promoter region. The results obtained by NMR, CD, and fluorescence titration confirmed by molecular modeling demonstrated that two out the four PARP1 inhibitors studied are capable of forming defined complexes with the PARP1 G-quadruplex. These results open the possibility of exploring the development of better G-quadruplex binders that, in turn, may also inhibit the enzyme.  相似文献   

13.
A widened DNA base‐pair architecture is studied in an effort to explore the possibility of whether new genetic system designs might possess some of the functions of natural DNA. In the “yDNA” system, pairs are homologated by addition of a benzene ring, which yields (in the present study) benzopyrimidines that are correctly paired with purines. Here we report initial tests of ability of the benzopyrimidines yT and yC to store and transfer biochemical and biological information in vitro and in bacterial cells. In vitro primer extension studies with two polymerases showed that the enzymes could insert the correct nucleotides opposite these yDNA bases, but with low selectivity. PCR amplifications with a thermostable polymerase resulted in correct pairings in 15–20 % of the cases, and more successfully when yT or yC were situated within the primers. Segments of DNA containing one or two yDNA bases were then ligated into a plasmid and tested for their ability to successfully lead the expression of an active protein in vivo. Although active at only a fraction of the activity of fully natural DNA, the unnatural bases encoded the correct codon bases in the majority of cases when singly substituted, and yielded functioning green fluorescent protein. Although the activities with native polymerases are modest with these large base pairs, this is the first example of encoding protein in vivo by an unnatural DNA base pair architecture.  相似文献   

14.
15.
16.
HIV-1 RT is a necessary enzyme for retroviral replication, which is the main target for antiviral therapy against AIDS. Effective anti-HIV-1 RT drugs are divided into two groups; nucleoside inhibitors (NRTI) and non-nucleoside inhibitors (NNRTI), which inhibit DNA polymerase. In this study, new DNA aptamers were isolated as anti-HIV-1 RT inhibitors. The selected DNA aptamer (WT62) presented with high affinity and inhibition against wild-type (WT) HIV-1 RT and gave a KD value of 75.10±0.29 nM and an IC50 value of 84.81±8.54 nM. Moreover, WT62 decreased the DNA polymerase function of K103 N/Y181 C double mutant (KY) HIV-1 RT by around 80 %. Furthermore, the ITC results showed that this aptamer has small binding enthalpies with both WT and KY HIV-1 RTs through which the complex might form a hydrophobic interaction or noncovalent bonding. The NMR result also suggested that the WT62 aptamer could bind with both WT and KY mutant HIV-1 RTs at the connection domain.  相似文献   

17.
基于定量构效关系和分子对接研究理论,以34个噻吩并嘧啶酮类磷酸二酯酶7(PDE7)抑制剂为研究对象,采用比较分子相似性指数法(Co MSIA)和GOLD分子对接法研究其特征结构信息以及与靶标的作用机制。结果表明,所建立Co MSIA模型的预测能力较强(Q2=0.53,R2ncv=0.96,R2pre=0.89),结合分子对接结果还发现,抑制剂与PDE7间的作用力以氢键作用力和π-π堆积作用为主;大体积的亲水性氢键供体R1取代基、亲水性R2取代基有利于化合物活性的增强,且哌啶环上有益于结合氢键的受体基团。所得模型和信息为后续新型PDE7抑制剂的设计开发提供理论指导。  相似文献   

18.
Glycosyltransferases play an important role in the formation of oligosaccharides and glycoconjugates. To find suitable and selective inhibitors for this class of enzymes is still challenging. Here, we describe a novel concept that allows the design of inhibitors based on the structure of the donor substrate binding pocket. As a first step we describe the design, synthesis and analysis of inhibitors of the human blood group B galactosyltransferase (GTB). This enzyme served as a model system to study the concept, which can be used for easy access of glycosyltransferase inhibitors in general. In silico docking of bicyclic heteroaromatic ligands to GTB and experimental verification of binding affinities by saturation transfer difference NMR (STD NMR) spectroscopy gave 9-N-pentityl uric acid derivatives as non-ionic mimics of UDP. Two derivatives were synthesized and showed inhibitory activity for GTB as determined by competitive STD NMR experiments and by a radiolabeled enzyme assay.  相似文献   

19.
Adenoviruses contain dsDNA covalently linked to a terminal protein (TP) at the 5′end. TP plays a pivotal role in replication and long-lasting infectivity. TP has been reported to contain a nuclear localisation signal (NLS) that facilitates its import into the nucleus. We studied the potential NLS motifs within TP using molecular and cellular biology techniques to identify the motifs needed for optimum nuclear import. We used confocal imaging microscopy to monitor the localisation and nuclear association of GFP fusion proteins. We identified two nuclear localisation signals, PV(R)6VP and MRRRR, that are essential for fully efficient TP nuclear entry in transfected cells. To study TP–host interactions further, we expressed TP in Escherichia coli (E. coli). Nuclear uptake of purified protein was determined in digitonin-permeabilised cells. The data confirmed that nuclear uptake of TP requires active transport using energy and shuttling factors. This mechanism of nuclear transport was confirmed when expressed TP was microinjected into living cells. Finally, we uncovered the nature of TP binding to host nuclear shuttling proteins, revealing selective binding to Imp β, and a complex of Imp α/β but not Imp α alone. TP translocation to the nucleus could be inhibited using selective inhibitors of importins. Our results show that the bipartite NLS is required for fully efficient TP entry into the nucleus and suggest that this translocation can be carried out by binding to Imp β or Imp α/β. This work forms the biochemical foundation for future work determining the involvement of TP in nuclear delivery of adenovirus DNA.  相似文献   

20.
A three‐dimensional model of a complex between HIV‐1 integrase (IN), viral DNA, and metal ions that we recently built was used as a target for a docking method (induced‐fit docking, IFD) that accurately predicts ligand binding modes and concomitant structural changes in the receptor. Six different well‐known integrase strand transfer inhibitors (INSTIs): L‐708,906, L‐731,988, S‐1360, L‐870,810, raltegravir, and elvitegravir were thus used as ligands for our docking simulations. The obtained IFD results are consistent with the mechanism of action proposed for this class of IN inhibitors, that is, metal chelating/binding agents. This study affords new insight into the possible mechanism of inhibition and binding conformations for INSTIs. The impact on our hypothesis of specific mutations associated with IN inhibitor resistance was also evaluated. All these findings might have implications for integrase‐directed HIV‐1 drug discovery efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号