首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
研究了掺木质素和萘系减水剂与激发剂的改性生土材料流变和力学性能.当水灰比为0.6时,萘系减水剂∶木质素减水剂为4∶6,掺量为1%时,改性生土泥浆的分散效果最好;当水灰比为0.5时,萘系∶木质素减水剂为6∶4,掺量为1%时,改性生土泥浆的分散效果最好.掺木质素和萘系复合减水剂与激发剂的改性生土材料,其生土强度提高最大;复合减水剂的比例为萘系∶木质素=1∶1和复合减水剂掺量为1%,生土改性材料抗压强度达到40MPa.  相似文献   

2.
本文以高岭土、鲁山土、叶腊石、石灰和矿渣粉为主要原料,采用化学发泡法制备钙长石系轻质隔热砖坯体,再经高温煅烧进而制备钙长石系轻质隔热砖.在实验室条件下研究了发泡剂用量、料浆流动性和碱性激发剂的掺量等对化学发泡法浇注工艺和干坯抗压强度的影响,并借助于XRD分析了烧结体的物相组成,借助于光学显微镜观察其孔结构.结果表明,控制发泡剂用量6%,料浆水固比0.52,减水剂掺量1.5%,碱性激发剂用量0.5%,借助于化学发泡法,可以制得干坯容重350 kg/m3左右的轻质隔热砖坯体,干坯抗压强度可达0.55 MPa.由此制得的坯体在1340℃下保温2h后可以得到容重为500 kg/m3,抗压强度达到1.25 MPa的钙长石系轻质隔热砖.XRD分析表明,烧结体以钙长石相为主晶相,并有少量刚玉相;光学显微镜观察表明,烧结体内部显示发达而均匀分布的封闭圆形孔隙,平均孔径约700μm.  相似文献   

3.
采用正交试验法探讨外加剂及工艺参数等不同因素对粉煤灰水泥胶砂强度的影响,确定水泥胶砂强度性能的最佳配方。结果表明:对粉煤灰水泥胶砂试样3d抗压强度的影响从大到小的次序为粉磨时间、激发剂掺量、水灰比、助磨剂掺量、减水剂掺量、助磨剂品种、激发剂品种;对粉煤灰水泥胶砂试样28d抗压强度的影响从大到小的次序为粉磨时间、减水剂掺量、激发剂掺量、助磨剂掺量、助磨剂品种、激发剂品种、水灰比。正交试验法确定的粉煤灰水泥胶砂试样的最佳配方为:激发剂选用Ca Cl2,掺量为2%;助磨剂选用丙三醇,掺量为0.03%;减水剂掺量为1.5%;粉磨时间为15min;水灰比为0.4。  相似文献   

4.
以镍铁渣为主要原料,通过碱激发制备了地质聚合物胶凝材料。采用正交试验研究了工艺参数对地质聚合物抗压强度的影响,研究结果表明:在水玻璃模数为2.4、碱性激发剂掺量为12%和水灰比为0.28时,制备的地质聚合物28 d抗压强度高达97.62MPa,并且具有良好的耐久性。由XRD可知,镍铁渣地质聚合物中有无定型硅铝酸盐相生成,表明发生了水化反应。FTIR表明,生成了Si-O-T(Si,Al)和Al-O-Si三维网络结构。SEM微观形貌分析显示,所制备镍铁渣地质聚合物的孔隙率较低,结构致密。  相似文献   

5.
以复合硅酸盐水泥和快硬硫铝酸盐水泥为胶凝材料,双氧水为发泡剂,硬脂酸钙为稳泡剂,硅灰和减水剂等原料为添加剂,制备了发泡水泥.采用旋转黏度计测量不同萘系减水剂用量发泡水泥浆体的黏度,采用紫外分光光度计测量出发泡水泥对不同用量萘系减水剂的吸附率,并测试分析了萘系减水剂对发泡水泥制品的抗折强度、吸水率及干密度等性能的影响.结果表明:浆体的黏度随萘系减水剂用量的增加而减小,发泡水泥对萘系减水剂的吸附率下降,在测试范围内,发泡水泥制品的干密度随萘系减水剂用量的增多而先减小后增大,抗折强度和抗压强度增加,吸水率先增大后减小,减水剂用量控制在一定范围内可有效提高发泡水泥的综合性能.  相似文献   

6.
采用矿渣、粉煤灰为原料,液体水玻璃、固体水玻璃、固体NaOH为激发剂,研究Na_2O掺量、模数、粉煤灰掺量、萘系减水剂掺量对矿渣/粉煤灰胶凝材料胶砂强度、凝结时间的影响。结果表明:液体水玻璃最佳Na_2O掺量6%、模数1.00,28d抗压强度63.0MPa、抗折强度12.2MPa;固体水玻璃最佳Na_2O掺量4%、模数0.50,28d抗压强度20.5MPa、抗折强度6.3MPa;随着萘系减水剂掺量的增加,胶凝材料的凝结时间增加,萘系减水剂掺量1.5%的初凝时间362min、终凝时间392min、间隔30min,缓凝效果显著。  相似文献   

7.
以循环流化床粉煤灰及高炉矿渣为主要原材料,在发泡剂掺量占固废原料为5%的情况下,通过改变稳泡剂掺量,制备一系列碱激发发泡材料.并探究硬脂酸钙掺量变化对于碱激发发泡材料体系宏观力学性能,孔径分布及微观形貌的影响.研究表明,硬脂酸钙的掺入,大大提高了浆体内气泡的稳定性,但掺量超过1.25%时,浆体黏度大大提升,工作性能变差,气泡分布不均匀,强度明显降低.  相似文献   

8.
李国新  曾志英  陈畅  史琛  李娜 《硅酸盐通报》2013,32(7):1340-1345
采用从砂中洗出来的泥粉外掺入到萘系、氨基磺酸盐及聚羧酸三种高效减水剂塑化的水泥浆体中,测试其流动度.测试结果表明,随泥粉掺量的增大,浆体流动度出现不同程度的降低.采用保持水/(水泥+泥粉)不变和掺入适量缓凝剂葡萄糖酸钠的方法改善浆体流动度,测试结果表明掺萘系和氨基磺酸盐高效减水剂浆体的流动度得以改善,而掺聚羧酸高效减水剂浆体的流动度则改善效果不明显.最后通过测试水泥浆体和泥浆的Zeta电位和对高效减水剂的吸附量,分析了泥粉对掺三种高效减水剂水泥浆体流动性产生不同影响的原因.  相似文献   

9.
本文目的,探究影响无机矿物聚合物基快速修补砂浆抗压强度和凝结时间的主要因素及其变化规律。探究方法,以矿碴和粉煤灰为主要原材料,加入纤维和减水剂作为辅助材料,在碱性激发剂作用下,常温下制备无机矿物聚合物砂浆和净浆。探究结果,水玻璃模数在0.76~0.93范围内,水玻璃掺量为0.34%,胶凝材料掺量为4时,无机矿物聚合物基快速修补砂浆可以兼顾早强和快硬;试件可在10~20min内凝结硬化,3d抗压强度达到33.9MPa;是一种早强快硬的新型修补材料。  相似文献   

10.
王立宁  陈振  张增志 《硅酸盐通报》2020,39(7):2085-2091
将矿渣分别与粉煤灰、偏高岭土混合作为主要原料,以过氧化氢为发泡剂制备两种地质聚合物多孔材料.结合体式显微镜和Image-Pro Plus图像分析技术等测试手段,对多孔地质聚合物气孔结构进行表征,研究了不同过氧化氢用量对矿渣基地质聚合物多孔材料气孔结构、吸水性、释水性以及集水性的影响.分析不同过氧化氢用量制备的多孔地质聚合物气孔结构与吸水性、释水性的关系,进而得出材料兼具吸水性和释水性时的过氧化氢用量.研究结果显示,随着发泡剂用量的增加,地质聚合物泡孔尺寸随之增大,吸水性和集水性也有提升,释去单位质量的水所用时间明显减少.  相似文献   

11.
为得到室温下粉煤灰与碱激发剂质量比、水玻璃与氢氧化钠溶液质量比和氢氧化钠溶液摩尔浓度对粉煤灰地质聚合物力学性能的影响,以低钙粉煤灰为原料,制备了地质聚合物胶凝材料。采用正交试验方法,分析粉煤灰地质聚合物抗压强度,探讨碱激发剂配比对粉煤灰地质聚合物力学性能的影响,结合SEM、XRD和FTIR对试样进行表征,并对该材料的应力-应变曲线进行了研究。结果表明:粉煤灰地质聚合物的抗压强度随着激发剂掺量的减少而增大,水玻璃在激发剂中的比值与粉煤灰地质聚合物的抗压强度呈现正相关,其中粉煤灰与碱激发剂质量比为1.8,水玻璃与氢氧化钠溶液质量比为2.5且氢氧化钠溶液的浓度为10 mol/L时,120 d龄期的抗压强度可达51.98 MPa。对应力-应变曲线分析得出,在一定程度上,激发剂的掺入量对粉煤灰地质聚合物的破坏应变和弹性模量有较大影响。SEM、XRD和FTIR分析表明随着养护时间增长,胶凝材料体系内结构更致密,生成了更多的硅铝酸盐凝胶。  相似文献   

12.
以钢渣为主要原料,水玻璃为激发剂,H2O2为发泡剂,制备多孔地质聚合物材料。采用XRD、FTIR、SEM、BET等对原料及最终试样进行表征,研究钙硅比、激发剂和H2O2掺量对该材料性能的影响。将所制备的多孔地质聚合物用作吸附剂,初步考察该材料对Cu2+的吸附效果。试验表明:当钙硅比为1.0,水玻璃掺量为20.4%(质量分数),发泡剂掺量为4%(质量分数)时,该材料性能良好,总孔隙率86.4%,抗压强度0.5 MPa,体积密度0.408 g/cm3,体积吸水率56.31%,钢渣使用率65.85%,比表面积与孔容显著提高。吸附结果显示:该材料对Cu2+吸附效果良好,去除率可达91.44%,平衡吸附量达到15.239 mg/g,吸附过程符合准二级动力学模型。  相似文献   

13.
为将页岩提钒尾渣资源化,利用页岩提钒尾渣作为主要原料,偏高岭土为铝质辅料制备地聚合物。考察了成型方式、硅铝原料配比、碱激发剂种类、碱激发剂用量和成型压力对地聚合物试样抗压强度的影响。结果表明,地聚合物制备最佳条件为:原料的质量配比(尾渣/偏高岭土)为11:9,NaOH碱激发剂质量分数为10%,水固比为0.18,成型压力为20 MPa,试样14 d抗压强度可达58.25 MPa。通过XRD、FTIR、TG-DSC、SEM和孔径分析对地聚合物试样进行检测表征,分析表明,地聚合反应的主要产物为无定形硅铝凝胶和少量钠沸石,无定形硅铝凝胶可以改善试样的孔结构,增强试样微观结构致密度,宏观表现为试样抗压强度增大。  相似文献   

14.
《Ceramics International》2022,48(13):18224-18237
The existing fly ash-slag foaming geopolymer materials generally have the shortcomings of low fly ash content and low porosity. It is urgent to develop geopolymer foaming materials with high fly ash content and high porosity. Using fly ash and slag as the main raw materials, geopolymer foaming materials were prepared by alkali activation. The effects of activator content and sodium silicate modulus on the macroscopic mechanical properties, pore structures and microstructures of geopolymer foaming materials were studied. The experimental results showed that when the activator content was 21% (wt.) and the modulus of sodium silicate was 1, the specimen exhibited the best performance. The compressive strength of the specimen reached 2.18 MPa at 28 d, the porosity was 63.07%, and the average pore sizes of macroscopic pores were 920 μm. Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) and Scanning Electron Microscopy and Energy Dispersive Spectrometer (SEM-EDS) analysis showed that when the content of activator was 21% and the modulus of sodium silicate was 1, the reaction grade of the system was the highest, reached 55.12%, meanwhile the main product Sodium silicate hydrate (N-A-S-H) gel produced the largest amount. The fractal dimension calculations showed that the spatial complexity of a specimen with large pores was greater than that of a specimen with small pores. This study can provide a basis for the design of geopolymer foaming materials with high proportion of fly ash and high porosity.  相似文献   

15.
《Ceramics International》2017,43(2):2267-2273
Metakaolin-based geopolymer membrane supports were synthesized by gelcasting using hydrogen peroxide with the addition of albumen powder as surfactant. A geopolymer slurry was prepared using metakaolin and an alkaline medium at room temperature, the obtained viscous paste was expanded by means of the decomposition of peroxide in combination with protein-assisted foaming, and the geopolymerization was conducted in a closed environment at 75 °C. The combination of peroxide and albumen protein enabled the production of geopolymer membrane supports with a total porosity of ~74.29%, open porosity as high as ~65.25%, and possessing a compressive strength of ~4.47 MPa. Moreover, factors that influence the compressive strength, the porosity, and the pore size distribution were investigated. The results showed that the sizes of cell could be controlled by adding different content of peroxide and protein, and by heat-treating at different temperatures.  相似文献   

16.
《Ceramics International》2022,48(10):14076-14090
Environmental issues caused by glass fiber reinforced polymer (GFRP) waste have attracted much attention. The development of cost-effective recycling and reuse methods for GFRP composite wastes is therefore essential. In this study, the formulation of the GFRP waste powder replacement was set at 20–40 wt%. The geopolymer was formed by mixing GFRP powder, fly ash (FA), steel slag (SS) and ordinary Portland cement (OPC) with a sodium-based alkali activator. The effects of GFRP powder content, activator concentration, liquid to solid (L/S) ratio, and activator solution modulus on the physico-mechanical properties of geopolymer mixtures were identified. Based on the 28-day compressive strength, the optimal combination of the geopolymer mixture was determined to be 30 wt% GFRP powder content, an activator concentration of 85%, L/S of 0.65, and an activator solution modulus of 1.3. The ratios of compressive strength to flexural strength of the GFRP powder/FA-based geopolymers were considerably lower than those of the FA/steel slag-based geopolymers, which indicates that the incorporation of GFRP powder improved the geopolymer brittleness. The incorporation of 30% GFRP powder in geopolymer concrete to replace FA can enhance the compressive and flexural strengths of geopolymer concrete by 28%. After exposure to 600 °C, the flexural strength loss for geopolymer concretes containing 30 wt% GFRP powder was less than that of specimens without GFRP powder. After exposure to 900 °C, the compressive strength and flexural strength losses of geopolymer concretes containing 30 wt% GFRP powder were similar to those of specimens without GFRP powder. The developed GFRP powder/FA-based geopolymers exhibited comparable or superior physico-mechanical properties to those of the FA-based geopolymers, and thus offer a high application potential as building construction material.  相似文献   

17.
A FCC waste catalyst-based geopolymer was synthesized from FCC waste catalyst and silica fume, which were used as the main silicon-aluminum raw material and correction material, respectively. Meanwhile, NaOH and water glass composite were used as alkaline activator in the preparation process. Herein, the effects of silicon correction materials, alkaline activator modulus, and silica fume content on the compressive strength performance of prepared geopolymers were discussed. The microstructure was comprehensively analyzed by X-ray diffraction, fourier infrared spectroscopy, nuclear magnetic resonance spectroscopy and scanning electron microscope. The results showed that the prepared geopolymer has good early property when the silica fume content is 50% and the water glass modulus is 1.2. The 3d compressive strength of the obtained sample reaches 23.77 MPa. Microstructure and geopolymerization process analysis indicate that the FCC waste catalyst and silica fume have a good synergistic effect, which confirms the feasibility of preparing the geopolymer by using these industrial waste materials.  相似文献   

18.
王菲  刘泽  韩乐  谢福助 《硅酸盐通报》2021,40(3):914-920
对原状煤矸石进行了定性和定量双重分析,优化了煤矸石活化的煅烧温度,探究了钠铝比(n(Na)/n(Al)=0.52、0.57、0.62)和激发剂模数(M=0.66、0.69、1.32、1.65)对活化煤矸石地质聚合物抗压强度和微观结构的影响。利用XRD、FT-IR和SEM对活化煤矸石地质聚合物的微观结构进行了分析表征。结果表明,高温活化煤矸石有助于激发煤矸石中的活性组分,在煅烧温度为600 ℃时,高岭岩相完全消失,“鼓包峰”面积相对较大,可用于制备活化煤矸石地质聚合物。n(Na)/n(Al)的提高促进了地质聚合反应的进行,抗压强度也随之提高,同时随着激发剂模数的增加,抗压强度也随之增加。当n(Na)/n(Al)为0.62,激发剂模数为1.65时,试样7 d的抗压强度可达到52 MPa。活化煤矸石地质聚合物的聚合产物主要为水化硅铝酸钠(N-A-S-H)凝胶,水化产物致密,性能优良。  相似文献   

19.
粉煤灰地聚物的力学性能及微观结构研究   总被引:3,自引:0,他引:3  
赵素宁  曲烈  杨久俊  张泉 《粉煤灰》2010,22(5):3-6,13
研究了在常温、常压养护条件下制备粉煤灰地聚物的工艺,物理力学性能及其水化产物微观结构。结果表明:粉煤灰地聚物在水玻璃模数为1.5,碱固比为0.3,水灰比为0.3时,28d抗压强度为35.9MPa。由FTIR、DTA/TG和超景深显微镜等表征手段推断出:在水化过程中粉煤灰内玻璃体发生了解聚—缩聚反应,即玻璃体被碱溶液溶解解聚后在其边缘发生缩聚反应,生成非结晶相N-A-S-H凝胶,且N-A-S-H凝胶随着时间延长而增加。  相似文献   

20.
制备不同粒径和水灰比的水泥浆颗粒作为低水灰比混凝土内养护材料.以最佳内养护水灰比原则,设计了使用三种水灰比分别为0.6、0.7和0.8的同粒径水泥浆颗粒等体积取代砂子的混凝土.研究了不同水灰比水泥浆颗粒对混凝土早期自收缩、抗压强度和内部微结构的影响.结果表明:颗粒吸水率与其水灰比正相关、与其粒径负相关;预湿水泥浆颗粒可显著降低混凝土早期的自收缩,颗粒水灰比越大,自收缩降低效果越明显;但是掺入水泥浆颗粒也会降低混凝土的抗压强度,颗粒水灰比越高抗压强度降低越多,应用中应优化选择预湿颗粒的水灰比;水泥浆颗粒作为高性能混凝土内养护材料,可改善微观界面的孔隙结构,提高界面的密实性,减少混凝土早期的收缩和开裂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号