首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 188 毫秒
1.
B-cell non-Hodgkin’s lymphoma (NHL) risk associations had been mainly attributed to family history of the disease, inflammation, and immune components including human leukocyte antigen (HLA) genetic variations. Nevertheless, a broad range of genome-wide association studies (GWAS) have shed light into the identification of several genetic variants presumptively associated with B-cell NHL etiologies, survival or shared genetic risk with other diseases. The present review aims to overview HLA structure and diversity and summarize the evidence of genetic variations, by GWAS, on five NHL subtypes (diffuse large B-cell lymphoma DLBCL, follicular lymphoma FL, chronic lymphocytic leukemia CLL, marginal zone lymphoma MZL, and primary central nervous system lymphoma PCNSL). Evidence indicates that the HLA zygosity status in B-cell NHL might promote immune escape and that genome-wide significance variants can give biological insight but also potential therapeutic markers such as WEE1 in DLBCL. However, additional studies are needed, especially for non-DLBCL, to replicate the associations found to date.  相似文献   

2.
TGF-β1 is known to inhibit muscle regeneration after muscle injury. However, it is unknown if high systemic levels of TGF-β can affect the muscle regeneration process. In the present study, we demonstrated the effect of a CCl4 intra-peritoneal injection and losartan (an angiotensin II type 1 receptor antagonist) on skeletal muscle (gastrocnemius muscle) injury and regeneration. Male C57BL/6 mice were grouped randomly as follows: control (n = 7), CCl4-treatment group (n = 7), and CCl4 + losartan treatment group (n = 7). After CCl4 treatment for a 16-week period, the animals were sacrificed and analyzed. The expression of dystrophin significantly decreased in the muscle tissues of the control group, as compared with that of the CCl4 + losartan group (p < 0.01). p(phospho)-Smad2/3 expression significantly increased in the muscles of the control group compared to that in the CCl4 + losartan group (p < 0.01). The expressions of Pax7, MyoD, and myogenin increased in skeletal muscles of the CCl4 + losartan group compared to the corresponding levels in the control group (p < 0.01). We hypothesize that systemically elevated TGF-β1 as a result of CCl4-induced liver injury causes skeletal muscle injury, while losartan promotes muscle repair from injury via blockade of TGF-β1 signaling.  相似文献   

3.
Up until now, many previous works have indicated us that the photoluminescence (PL) properties of phosphors sometimes can be changed with the change in the external temperature, resulting in the anomalous PL phenomena and correlated new applications that are difficult to achieve at room temperature. In this work, we report the temperature-dependent Bi3+-related PL properties in the YVO4:Bi3+ phosphor. Our findings show that increasing the temperature from 10 to 300 K enables manipulating the energy interaction from groups to Bi3+, thereby leading to the temperature-induced color tuning from blue (0.183, 0.212) to yellow (0.418, 0.490). Upon this heating process, we further reveal that the dynamic Bi3+ luminescence has experienced a regular transition from double-exponential to single-exponential decay, which results in the decrease in the average Bi3+ lifetime from 122.606 to 0.376 μs. Discussions on the PL results imply that the tunable PL observations are due to the interplay of temperature-dependent energy transfer from groups to Bi3+ and redistribution of the excited 3P0 and 3P1 states of Bi3+ upon the thermal stimulation. This work not only presents the temperature-triggered Bi3+ tunable properties in the well-studied YVO4 host lattice but also can provide new insights into revealing Bi3+-related PL mechanism in other Bi3+-doped photonic materials in the future and, in the meanwhile, gives some directive ideas for us to explore previously unnoticed applications for rare-earth (RE; eg, Eu3+, Pr3+, Tb3+, Eu2+, Er3+, etc) and other non-RE (eg, Bi3+, Mn4+, Mn2+, Cr3+, etc) doped phosphors.  相似文献   

4.
Patients with Brugada syndrome (BrS) can show a leftward deviation of the frontal QRS-axis upon provocation with sodium channel blockers. The cause of this axis change is unclear. In this study, we aimed to determine (1) the prevalence of this left axis deviation and (2) to evaluate its cause, using the insights that could be derived from vectorcardiograms. Hence, from a large cohort of patients who underwent ajmaline provocation testing (n = 1430), we selected patients in whom a type-1 BrS-ECG was evoked (n = 345). Depolarization and repolarization parameters were analyzed for reconstructed vectorcardiograms and were compared between patients with and without a >30° leftward axis shift. We found (1) that the prevalence of a left axis deviation during provocation testing was 18% and (2) that this left axis deviation was not explained by terminal conduction slowing in the right ventricular outflow tract (4th QRS-loop quartile: +17 ± 14 ms versus +13 ± 15 ms, nonsignificant) but was associated with a more proximal conduction slowing (1st QRS-loop quartile: +12[8;18] ms versus +8[4;12] ms, p < 0.001 and 3rd QRS-loop quartile: +12 ± 10 ms versus +5 ± 7 ms, p < 0.001). There was no important heterogeneity of the action potential morphology (no difference in the ventricular gradient), but a left axis deviation did result in a discordant repolarization (spatial QRS-T angle: 122[59;147]° versus 44[25;91]°, p < 0.001). Thus, although the development of the type-1 BrS-ECG is characterized by a terminal conduction delay in the right ventricle, BrS-patients with a left axis deviation upon sodium channel blocker provocation have an additional proximal conduction slowing, which is associated with a subsequent discordant repolarization. Whether this has implications for risk stratification is still undetermined.  相似文献   

5.
In this study, we evaluate the effect of HO-1 upregulation on blood pressure and cardiac function in the new model of infarct spontaneous hypertensive rats (ISHR). Male spontaneous hypertensive rats (SHR) at 13 weeks (n = 40) and age-matched male Wistar (WT) rats (n = 20) were divided into six groups: WT (sham + normal saline (NS)), WT (sham + Co(III) Protoporphyrin IX Chloride (CoPP)), SHR (myocardial infarction (MI) + NS), SHR (MI + CoPP), SHR (MI + CoPP + Tin Mesoporphyrin IX Dichloride (SnMP)), SHR (sham + NS); CoPP 4.5 mg/kg, SnMP 15 mg/kg, for six weeks, one/week, i.p., n = 10/group. At the sixth week, echocardiography (UCG) and hemodynamics were performed. Then, blood samples and heart tissue were collected. Copp treatment in the SHR (MI + CoPP) group lowered blood pressure, decreased infarcted area, restored cardiac function (left ventricular ejection fraction (LVEF), left ventricular fraction shortening (LVFS), +dp/dtmax, (−dp/dtmax)/left ventricular systolic pressure (LVSP)), inhibited cardiac hypertrophy and ventricular enlargement (downregulating left ventricular end-systolic diameter (LVEDD), left ventricular end-systolic diameter (LVESD) and heart weight/body weight (HW/BW)), lowered serum CRP, IL-6 and Glu levels and increased serum TB, NO and PGI2 levels. Western blot and immunohistochemistry showed that HO-1 expression was elevated in the SHR (MI + CoPP) group, while co-administration with SnMP suppressed the benefit functions mentioned above. In conclusion, HO-1 upregulation can lower blood pressure and improve post-infarct cardiac function in the ISHR model. These functions may be involved in the inhibition of inflammation and the ventricular remodeling process and in the amelioration of glucose metabolism and endothelial dysfunction.  相似文献   

6.
Visceral adipose tissue (VAT) metabolic profiling harbors the potential to disentangle molecular changes underlying obesity-related dysglycemia. In this study, the VAT exometabolome of subjects with obesity and different glycemic statuses are analyzed. The subjects (n = 19) are divided into groups according to body mass index and glycemic status: subjects with obesity and euglycemia (Ob+NGT, n = 5), subjects with obesity and pre-diabetes (Ob+Pre-T2D, n = 5), subjects with obesity and type 2 diabetes under metformin treatment (Ob+T2D, n = 5) and subjects without obesity and with euglycemia (Non-Ob, n = 4), used as controls. VATs are incubated in culture media and extracellular metabolite content is determined by proton nuclear magnetic resonance (1H-NMR). Glucose consumption is not different between the groups. Pyruvate and pyroglutamate consumption are significantly lower in all groups of subjects with obesity compared to Non-Ob, and significantly lower in Ob+Pre-T2D as compared to Ob+NGT. In contrast, isoleucine consumption is significantly higher in all groups of subjects with obesity, particularly in Ob+Pre-T2D, compared to Non-Ob. Acetate production is also significantly lower in Ob+Pre-T2D compared to Non-Ob. In sum, the VAT metabolic fingerprint is associated with pre-diabetes and characterized by higher isoleucine consumption, accompanied by lower acetate production and pyruvate and pyroglutamate consumption. We propose that glucose metabolism follows different fates within the VAT, depending on the individuals’ health status.  相似文献   

7.
This paper gives a detailed study of the electrochemical reduction of some paraquat dimer molecules PQ2+ (CH2nPQ2+, with n = 2, 3 and 4, in aqueous solution. As previously observed in DMF solution, these molecules are reduced by two successive bieletronic transfers, the first one leading to the PQ√+ (CH2nPQ√+ species, the second to the neutral species PQ(CH2)nPQ. It appears that the intramolecular association of PQ√+ is favoured in aqueous solution, this association was only observed for n = 3 in DMF solution. On the other hazd, cyclic voltammetry shows that covering of the electrode occurs during the reduction of PQ√+(CH2)nPQ√+ into the neutral species PQ(CH2nPQ. This phenomena is also observed for the first step of reduction for the molecule with n = 2.  相似文献   

8.
The adsorption of Co2(CO)8 onto the dehydrated Y-faujasite powder under an N2 atmosphere and onto the tetrahydrofuran slurry of Y-faujasite under a mixed CO and H2 atmosphere predominately yielded supported Co4(CO)12 and supported Co6(CO)16, respectively. The molecular cobalt-carbonyl clusters and their decarbonylated products have been structurally characterized by extended X-ray absorption fine structure (EXAFS). The decarbonylated sample a possesses a cluster of two Co atoms and the decarbonylated sample b has a cluster phase of three Co atoms. The decarbonylated sample a exhibited higher CH4 conversion and C2+ selectivity (C2+ selectivity = ∑nC n(n = 2–5)/∑nC n (n = 1–5) * 100%) in comparison with the decarbonylated sample b in methane homologation. A density functional theory (DFT) model was employed to calculate Co clusters adsorbed on a silica substrate which simulates Y-faujasite encapsulated Co clusters. The structural geometries, net spin electronic charge densities, energies of the metal–silica and metal–metal interactions in stable geometries are discussed and used to interpret the cluster size dependence of the catalytic activity and selectivity to C 2+ hydrocarbons in the methane homologation.  相似文献   

9.
Background: the neoplastic B cells of the Helicobacter pylori-related low-grade gastric mucosa-associated lymphoid tissue (MALT) lymphoma proliferate in response to H. pylori, however, the nature of the H. pylori antigen responsible for proliferation is still unknown. The purpose of the study was to dissect whether CagY might be the H. pylori antigen able to drive B cell proliferation. Methods: the B cells and the clonal progeny of T cells from the gastric mucosa of five patients with MALT lymphoma were compared with those of T cell clones obtained from five H. pylori–infected patients with chronic gastritis. The T cell clones were assessed for their specificity to H. pylori CagY, cytokine profile and helper function for B cell proliferation. Results: 22 of 158 CD4+ (13.9%) gastric clones from MALT lymphoma and three of 179 CD4+ (1.7%) clones from chronic gastritis recognized CagY. CagY predominantly drives Interferon-gamma (IFN-γ) and Interleukin-17 (IL-17) secretion by gastric CD4+ T cells from H. pylori-infected patients with low-grade gastric MALT lymphoma. All MALT lymphoma-derived clones dose dependently increased their B cell help, whereas clones from chronic gastritis lost helper activity at T-to-B-cell ratios greater than 1. Conclusion: the results obtained indicate that CagY drives both B cell proliferation and T cell activation in gastric MALT lymphomas.  相似文献   

10.
11.
The parameters of the electric-field-gradient tensor for copper sites in the HgBa2Ca n ? 1Cu n O2n + 2, Tl2Ba2Ca n ? 1Cu n O2n + 4, and Bi2Sr2Ca n ? 1Cu n O2n + 4 (n = 1–3) lattices have been determined using 67Cu(67Zn) Mössbauer emission spectroscopy and calculated in the framework of the point-charge approximation. The agreement between the experimental and calculated parameters has been achieved under the assumption that the holes formed as a result of the decrease in the oxidation state of a part of the mercury, thallium, or bismuth atoms are distributed over the oxygen sites in the Cu-O or adjacent planes. It has been demonstrated that the oxidation state of cations can be controlled in high-temperature superconducting ceramic materials.  相似文献   

12.
This work demonstrates that anodic deposition of vanadium oxide (denoted as VOx·nH2O) can be considered as the chemical co-precipitation of V5+ and V4+ oxy-/hydroxyl species and the accumulation of V5+ species at the vicinity of electrode surface is the key factor for the successful anodic deposition of VOx·nH2O at a potential much more negative than the equilibrium potential of the oxygen evolution reaction (OER). The results of in situ UV-vis spectra show that the V4+/V5+ ratio near the electrode surface can be controlled by varying the applied potential, leading to different, three-dimensional (3D) nanostructures of VOx·nH2O. The accumulation of V5+ species due to V4+ oxidation at potentials ≥0.4 V (vs. Ag/AgCl) has been found to be very similar to the phenomenon by adding H2O2 in the deposition solution. The X-ray photoelectron spectroscopic (XPS) results show that all VOx·nH2O deposits can be considered as aggregates consisting of mixed V5+ and V4+ oxy-/hydroxyl species with the mean oxidation state significantly increasing with the applied electrode potential.  相似文献   

13.
Inflammatory activation during acute ST-elevation myocardial infarction (STEMI) can contribute to post-infarct heart failure (HF). This study aimed to determine prognostic value of high-sensitivity C-reactive protein concentration (CRP) for HF over a long-term follow-up in 204 patients with a first STEMI undergoing guideline-based therapies including percutaneous coronary intervention. CRP was measured at admission, 24 h (CRP24), discharge (CRPDC), and one month (CRP1M) after index hospitalization for STEMI. Within a median period of 5.6 years post-index hospitalization for STEMI, hospitalization for HF (HFH) which is a primary endpoint, occurred in 24 patients (11.8%, HF+ group). During the study, 8.3% of HF+ patients died vs. 1.7% of patients without HFH (HF- group) (p = 0.047). CRP24, CRPDC, and CRP1M were significantly higher in HF+ compared to HF- group. The median CRP1M in HF+ group was 2.57 mg/L indicating low-grade systemic inflammation, in contrast to 1.54 mg/L in HF- group. CRP1M ≥ 2 mg/L occurred in 58.3% of HF+ vs. 42.8% of HF- group (p = 0.01). Kaplan–Meier analysis showed decreased probability of survival free from HFH in patients with CRP24 (p < 0.001), CRPDC (p < 0.001), and CRP1M (p = 0.03) in quartile IV compared to lower quartiles. In multivariable analysis, CRPDC significantly improved prediction of HFH over a multi-year period post-STEMI. Persistent elevation in CRP post STEMI aids in risk stratification for long-term HF and suggests that ongoing cardiac and low-grade systemic inflammation promote HF development despite guideline-based therapies.  相似文献   

14.
Tumor growth and survival requires a particularly effective immunosuppressant tumor microenvironment (TME) to escape destruction by the immune system. While immunosuppressive checkpoint markers like programmed cell death 1 ligand (PD-L1) are already being targeted in clinical practice, lymphocyte-activation-protein 3 (LAG-3), T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) and V-domain Ig suppressor of T cell activation (VISTA) inhibitors are currently under investigation in clinical trials. Reliable findings on the expression status of those immune checkpoint inhibitors on tumor-infiltrating lymphocytes (TILs) in the TME of oropharyngeal squamous cell carcinoma (OPSCC) are lacking. This work aims to describe the expression of LAG-3, TIM-3, and VISTA expression in the TME of OPSCC. We created a tissue microarray of paraffin-embedded tumor tissue of 241 OPSCC. Expression of the immune checkpoint protein LAG-3, TIM-3, and VISTA in OPSCC was evaluated using immunohistochemistry and results were correlated with CD8+ T-cell inflammation and human papillomavirus (HPV)-status. 73 OPSCC stained positive for LAG-3 (31%; HPV+:44%; HPV-:26%, p = 0.006), 122 OPSCC stained positive for TIM-3 (51%; HPV+:70%; HPV-:44%, p < 0.001) and 168 OPSCC (70%; HPV+:75%; HPV-:68%, p = 0.313) for VISTA. CD8+ T-cells were significantly associated with LAG-3, TIM-3 and VISTA expression (p < 0.001, p < 0.001, p = 0.007). Immune checkpoint therapy targeting LAG-3, TIM-3, and/or VISTA could be a promising treatment strategy especially in HPV-related OPSCC. Future clinical trials investigating the efficacy of a checkpoint blockade in consideration of LAG-3, TIM-3, and VISTA expression are required.  相似文献   

15.
The electronic band structure and carrier density of strained armchair graphene nanoribbons (AGNRs) with widths of n =3 m and n =3 m +1 were examined using tight-binding approximation. The current-voltage (I-V) model of uniaxial strained n =3 m AGNRs incorporating quantum confinement effects is also presented in this paper. The derivation originates from energy dispersion throughout the entire Brillouin zone of uniaxial strained AGNRs based on a tight-binding approximation. Our results reveal the modification of the energy bandgap, carrier density, and drain current upon strain. Unlike the two-dimensional graphene, whose bandgap remains near to zero even when a large strain is applied, the bandgap and carrier density of AGNRs are shown to be sensitive to the magnitude of uniaxial strain. Discrepancies between the classical calculation and quantum calculation were also measured. It has been found that as much as 19% of the drive current loss is due to the quantum confinement. These analytical models which agree well with the experimental and numerical results provide physical insights into the characterizations of uniaxial strained AGNRs.  相似文献   

16.
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality in the world. Hepatocarcinogenesis is complex, with an extraordinary molecular heterogeneity. Krüppel-like factor 4 (KLF4) plays an important role in cell proliferation and differentiation, and it can function as a tumor suppressor or an oncoprotein, depending on tissue type. The role of KLF4 in HCC remains controversial. The aim of this study was to explore the clinical significance of KLF4 expression in HCC. The study included 205 patients with surgical resection. We performed immunostaining for KLF4 and Ki-67 to investigate the correlations of the clinicopathological parameters of HCC and to examine the proliferative index. KLF4 staining was observed in the cytoplasm of non-tumorous hepatocytes and tumor cells. We subdivided the immunohistological staining results for KLF4 into low expression (Staining 0 and 1+) and high expression (Staining 2+ and 3+) subgroups. The expression of KLF4 was significantly correlated with tumor differentiation (p = 0.001). The Ki-67 proliferative index was significantly lower in well-differentiated HCCs (0.781% ± 1.02% vs. 2.16% ± 3.14%, p = 0.012), but not significantly different between low-KLF4 expression and high-KLF4 expression (1.87% ± 2.93% vs. 2.51% ± 3.28%, p = 0.32). Kaplan–Meier analysis showed that a high expression of KLF4 was significantly correlated with a longer disease-specific survival (p = 0.019). Univariate and multivariate analyses showed that high KLF4 expression was an independent predictor of a better disease-specific survival (p = 0.017; hazard ratio = 0.398; 95% confidence interval: 0.19–0.85). High cytoplasmic expression of KLF4 was associated with better disease-specific survival and was an independently favorable prognostic factor in hepatocellular carcinoma. These promising results suggest that KLF4 may play an anti-oncogenic role in hepatocarcinogenesis.  相似文献   

17.
In this study, we applied the epitope imprinting approach to prepare molecularly imprinted monolithic cryogels for immunoglobulin G (IgG) recognition. In this respect, we imprinted Fab fragments of IgG molecules instead of intact protein molecules via two different non-covalent interactions. In the first approach, we directly coordinated Fab fragments with N-methacryloyl-L-histidine (MAH), polymerizable derivative of L-histidine, but for the second, we used cupric ions [Cu(II)] as mediator between MAH and Fab fragments. The monolithic cryogels were characterized by Fourier transform infrared (FTIR) spectroscopy, swelling test, and scanning electron microscopy. Then, the monolithic cryogels were used for Fab fragment adsorption from aqueous solution while evaluating the factors such as pH and Fab fragment concentration affecting on adsorption process in continuous set-up. After that, monolithic cryogels were used for IgG adsorption by varying pH, IgG concentration, flowrate, and temperature in appropriate ranges. Maximum IgG adsorption capacities were determined as 32.4 mg/g and 49.0 mg/g for directly coordinated cryogel (MIPDirect) and Cu(II) assisted cryogel (MIPCu(II) assisted), respectively. Non-imprinted monolithic cryogels were also prepared for control purposes. In addition to Fab fragments and IgG molecules, albumin and Fc fragment of IgG molecules were used as competitor biomolecules in order to investigate the selectivity gained by imprinting process. Relative selectivity constants were calculated as 1.47, 2.64 and 3.89 for MIPDirect and 2.90, 8.98, and 11.51 for MIPCu(II) assisted for Fab/IgG, Fab/Fc, and Fab/albumin as biomolecule pairs, respectively. The desorption efficiency and reusability of MIPCu(II) assisted cryogel were better than that of MIPDirect. The results reported here showed that the metal ion assistance improved the selectivity features of the imprinted cryogels and allowed to study under milder conditions with enhanced adsorptive properties.  相似文献   

18.
Osteocytes are terminally differentiated osteoblasts embedded within the bone matrix and key orchestrators of bone metabolism. However, they are generally not characterized by conventional bone histomorphometry because of their location and the limited resolution of light microscopy. OI is characterized by disturbed bone homeostasis, matrix abnormalities and elevated bone matrix mineralization density. To gain further insights into osteocyte characteristics and bone metabolism in OI, we evaluated 2D osteocyte lacunae sections (OLS) based on quantitative backscattered electron imaging in transiliac bone biopsy samples from children with OI type I (n = 19) and age-matched controls (n = 24). The OLS characteristics were related to previously obtained, re-visited histomorphometric parameters. Moreover, we present pediatric bone mineralization density distribution reference data in OI type I (n = 19) and controls (n = 50) obtained with a field emission scanning electron microscope. Compared to controls, OI has highly increased OLS density in cortical and trabecular bone (+50.66%, +61.73%; both p < 0.001), whereas OLS area is slightly decreased in trabecular bone (−10.28%; p = 0.015). Correlation analyses show a low to moderate, positive association of OLS density with surface-based bone formation parameters and negative association with indices of osteoblast function. In conclusion, hyperosteocytosis of the hypermineralized OI bone matrix associates with abnormal bone cell metabolism and might further impact the mechanical competence of the bone tissue.  相似文献   

19.
A series of newly designed polyimides, composed of aromatic polyimide backbones and methylene side chains with terminal 4-cyanobiphenyl groups, were synthesized based on the polycondensation of 3,3′,4,4′-biphenyl tetracarboxylic dianhydride (BPDA) with 2,2′-bis{ω-[4-(4-cyanophenyl)phenyoxy-n-alkoxycarbonyl]}-4,4′-biphenyl diamine (nCBBP, where n is the number of methylene units in the side chains). We report our structural and morphological studies on this series of BPDA-nCBBP, which possesses n=7, 9, and 11 methylene units in the side chains. For these three polyimides, a nematic (N) phase was first formed at high-temperatures during cooling from the isotropic melt. The transition temperatures and enthalpies were cooling-rate independent as observed in differential scanning calorimetry. This N phase was further confirmed by the results of wide angle X-ray diffraction (WAXD) and polarized light microscopic experiments. At lower temperatures, ordered structures were formed. It was surprising that in the cases of BPDA-nCBBP (n=7 and 9), triclinic lattices were observed; while in the case of BPDA-11CBBP, a hexagonal lattice was evident, as determined by 2D WAXD experiments. This indicated that by increasing the number of methylene units in the LC side chains, the individual chains (base unit) used in constructing these supra-molecular structures changed their packing symmetry. Namely, when the number of methylene units in the side chains was relatively low (i.e. the length is short), the individual chains were packed into a ribbon-like structure. However, when the side chain length is long enough, the individual chains exhibit cylindrical symmetry. Regardless of the lattice formed by the supra-molecular structures, they are all on the nanometer length scale.  相似文献   

20.
Lipid accumulation in the human liver seems to be a crucial mechanism in the pathogenesis and the progression of non-alcoholic fatty liver disease (NAFLD). We aimed to evaluate gene expression of different fatty acid (FA) metabolism-related genes in morbidly obese (MO) women with NAFLD. Liver expression of key genes related to de novo FA synthesis (LXRα, SREBP1c, ACC1, FAS), FA uptake and transport (PPARγ, CD36, FABP4), FA oxidation (PPARα), and inflammation (IL6, TNFα, CRP, PPARδ) were assessed by RT-qPCR in 127 MO women with normal liver histology (NL, n = 13), simple steatosis (SS, n = 47) and non-alcoholic steatohepatitis (NASH, n = 67). Liver FAS mRNA expression was significantly higher in MO NAFLD women with both SS and NASH compared to those with NL (p = 0.003, p = 0.010, respectively). Hepatic IL6 and TNFα mRNA expression was higher in NASH than in SS subjects (p = 0.033, p = 0.050, respectively). Interestingly, LXRα, ACC1 and FAS expression had an inverse relation with the grade of steatosis. These results were confirmed by western blot analysis. In conclusion, our results indicate that lipogenesis seems to be downregulated in advanced stages of SS, suggesting that, in this type of extreme obesity, the deregulation of the lipogenic pathway might be associated with the severity of steatosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号