首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Oxytocin is secreted by hypothalamic supraoptic nucleus (SON) and paraventricular nucleus (PVN) oxytocin neurons to induce uterine contractions during parturition. Increased activation of oxytocin neurons at parturition involves a network of afferent inputs that increase oxytocin neuron excitability. Kisspeptin fibre density increases around oxytocin neurons during pregnancy, and central kisspeptin administration excites oxytocin neurons only in late pregnancy. Kisspeptin signals via extracellular regulated kinase 1/2 (ERK1/2) and p38. Therefore, to determine whether kisspeptin excites oxytocin neurons via ERK1/2-p38 signalling in late-pregnant rats, we performed immunohistochemistry for phosphorylated ERK1/2 (pERK1/2) and phosphorylated p38 (p-p38) in oxytocin neurons of non-pregnant and late-pregnant rats. Intracerebroventricular (ICV) kisspeptin administration (2 µg) did not affect pERK1/2 or p-p38 expression in SON and PVN oxytocin neurons of non-pregnant or late-pregnant rats. Furthermore, ICV kisspeptin did not affect pERK1/2 or p-p38 expression in brain areas with major projections to the SON and PVN: the nucleus tractus solitarius, rostral ventrolateral medulla, locus coeruleus, dorsal raphe nucleus, organum vasculosum of the lamina terminalis, median preoptic nucleus, subfornical organ, anteroventral periventricular nucleus, periventricular nucleus and arcuate nucleus. Hence, kisspeptin-induced excitation of oxytocin neurons in late pregnancy does not appear to involve ERK1/2 or p38 activation in oxytocin neurons or their afferent inputs.  相似文献   

2.
    
Oxytocin has been revealed to work for anxiety suppression and anti-stress as well as for psychosocial behavior and reproductive functions. Oxytocin neurons are activated by various stressful stimuli. The oxytocin receptor is widely distributed within the brain, and oxytocin that is released or diffused affects behavioral and neuroendocrine stress responses. On the other hand, there has been an increasing number of reports on the role of oxytocin in allostasis and resilience. It has been shown that oxytocin maintains homeostasis, shifts the set point for adaptation to a changing environment (allostasis) and contributes to recovery from the shifted set point by inducing active coping responses to stressful stimuli (resilience). Recent studies have suggested that oxytocin is also involved in stress-related disorders, and it has been shown in clinical trials that oxytocin provides therapeutic benefits for patients diagnosed with stress-related disorders. This review includes the latest information on the role of oxytocin in stress responses and adaptation.  相似文献   

3.
    
Female infertility has a multifactorial origin, and exposure to contaminants, including pesticides, with endocrine-disrupting properties is considered to be involved in this reproductive disorder, especially when it occurs during early life. Pesticides are present in various facets of the environment, and consumers are exposed to a combination of multiple pesticide residues through food intake. The consequences of such exposure with respect to female fertility are not well known. Therefore, we aimed to assess the impact of pre- and postnatal dietary exposure to a pesticide mixture on folliculogenesis, a crucial process in female reproduction. Mice were exposed to the acceptable daily intake levels of six pesticides in a mixture (boscalid, captan, chlorpyrifos, thiacloprid, thiophanate and ziram) from foetal development until 8 weeks old. Female offspring presented with decreased body weight at weaning, which was maintained at 8 weeks old. This was accompanied by an abnormal ovarian ultrastructure, a drastic decrease in the number of corpora lutea and progesterone levels and an increase in ovary cell proliferation. In conclusion, this study shows that this pesticide mixture that can be commonly found in fruits in Europe, causing endocrine disruption in female mice with pre- and postnatal exposure by disturbing folliculogenesis, mainly in the luteinisation process.  相似文献   

4.
    
Many of the survivors of the novel coronavirus disease (COVID-19) are suffering from persistent symptoms, causing significant morbidity and decreasing their quality of life, termed “post-COVID-19 syndrome” or “long COVID”. Understanding the mechanisms surrounding PCS is vital to developing the diagnosis, biomarkers, and possible treatments. Here, we describe the prevalence and manifestations of PCS, and similarities with previous SARS epidemics. Furthermore, we look at the molecular mechanisms behind the neurological features of PCS, where we highlight important neural mechanisms that may potentially be involved and pharmacologically targeted, such as glutamate reuptake in astrocytes, the role of NMDA receptors and transporters (EAAT2), ROS signaling, astrogliosis triggered by NF-κB signaling, KNDy neurons, and hypothalamic networks involving Kiss1 (a ligand for the G-protein-coupled receptor 54 (GPR54)), among others. We highlight the possible role of reactive gliosis following SARS-CoV-2 CNS injury, as well as the potential role of the hypothalamus network in PCS manifestations.  相似文献   

5.
    
This review provides an overview of the assessment of the endocrine disrupting (ED) properties of carbon disulfide (CS2), following the methodology used at the European level to identify endocrine disruptors. Relevant in vitro, in vivo studies and human data are analyzed. The assessment presented here focuses on one endocrine activity, i.e., thyroid disruption, and two main adverse effects, neurotoxicity and cardiotoxicity. The data available on the different ED or non-ED modes of action (MoA), known to trigger these adverse effects, are described and the strength of evidence of the different MoA is weighted. We conclude that the adverse effects could be due to systemic toxicity rather than endocrine-mediated toxicity. This assessment illustrates the scientific and regulatory challenges in differentiating a specific endocrine disruption from an indirect endocrine effect resulting from a non-ED mediated systemic toxicity. This issue of evaluating the ED properties of highly toxic and reactive substances has been insufficiently developed by European guidance so far and needs to be further addressed. Finally, this example also raises questions about the capacity of the technics available in toxicology to address such a complex issue with certainty.  相似文献   

6.
    
Carbamates are widely used and known around the world as pesticides in spite of also having medical applications. This class of chemicals is classified as acetylcholinesterase inhibitors, blocking acetylcholine hydrolyzation in a reversible manner. Their lack of species selectivity and their reported high toxicity can induce, upon exposure, adverse outcomes in male fertility that may lead to infertility. In addition, they are also considered endocrine-disrupting chemicals and can interfere with the hypothalamic–pituitary–testicular axis, essential for the normal function of the male reproductive system, thus being able to provoke male reproductive dysfunctions. Although the molecular mechanisms are not fully understood, various signaling pathways, such as those mediated by acetylcholine or kisspeptin, are affected by exposure to carbamates, thus compromising steroidogenesis and spermatogenesis. Over the last decades, several studies, both in vitro and in vivo, have reported a myriad of negative effects of carbamates on the male reproductive system. In this review, an up-to-date overview of the impact of carbamates on the male reproductive system is discussed, with an emphasis on the role of these compounds on acetylcholine regulation and the male endocrine system.  相似文献   

7.
    
The tightly localized noradrenergic neurons (NA) in the locus coeruleus (LC) are well recognized as essential for focused arousal and novelty-oriented responses, while many children with autism spectrum disorder (ASD) exhibit diminished attention, engagement and orienting to exogenous stimuli. This has led to the hypothesis that atypical LC activity may be involved in ASD. Oxytocin (OXT) neurons and receptors are known to play an important role in social behavior, pair bonding and cognitive processes and are under investigation as a potential treatment for ASD. However, little is known about the neurotransmission from hypothalamic paraventricular (PVN) OXT neurons to LC NA neurons. In this study, we test, in male and female rats, whether PVN OXT neurons excite LC neurons, whether oxytocin is released and involved in this neurotransmission, and whether activation of PVN OXT neurons alters novel object recognition. Using “oxytocin sniffer cells” (CHO cells that express the human oxytocin receptor and a Ca indicator) we show that there is release of OXT from hypothalamic PVN OXT fibers in the LC. Optogenetic excitation of PVN OXT fibers excites LC NA neurons by co-release of OXT and glutamate, and this neurotransmission is greater in males than females. In male, but not in female animals, chemogenetic activation of PVN OXT neurons increases attention to novel objects.  相似文献   

8.
Animals continuously release biogenic substances that vary in composition with physiological state. In aquatic systems, animals can gain insight about conditions or events upstream and alter their physiology and behavior to exploit this information. Here, we review observations on aquatic animals as diverse as snails, shrimp, fish, and frog tadpoles to probe the possibility that high-density aquaculture might generate chemical messages that cause conspecific or related individuals to reduce productive processes (growth, metamorphosis, ecdysis, reproduction) or even to sicken and die (loss of immunocompetence, anaphylaxis). The potential for ecological disruption logically is maximized under conditions that uncouple the parts of the system generating and receiving such signals—as would be the case when aquacultural effluents enter natural aquatic systems.  相似文献   

9.
    
Thyroid hormone (TH) signaling is a prerequisite of normal tissue function. Environmental pollutants with the potential to disrupt endocrine functions represent an emerging threat to human health and agricultural production. We used our Thyroid Hormone Action Indicator (THAI) mouse model to study the effects of tetrabromobisphenol A (TBBPA; 150 mg/bwkg/day orally for 6 days) and diclazuril (10.0 mg/bwkg/day orally for 5 days), a known and a potential hormone disruptor, respectively, on local TH economy. Tissue-specific changes of TH action were assessed in 90-day-old THAI mice by measuring the expression of a TH-responsive luciferase reporter in tissue samples and by in vivo imaging (14-day-long treatment accompanied with imaging on day 7, 14 and 21 from the first day of treatment) in live THAI mice. This was followed by promoter assays to elucidate the mechanism of the observed effects. TBBPA and diclazuril impacted TH action differently and tissue-specifically. TBBPA disrupted TH signaling in the bone and small intestine and impaired the global TH economy by decreasing the circulating free T4 levels. In the promoter assays, TBBPA showed a direct stimulatory effect on the hdio3 promoter, indicating a potential mechanism for silencing TH action. In contrast, diclazuril acted as a stimulator of TH action in the liver, skeletal muscle and brown adipose tissue without affecting the Hypothalamo-Pituitary-Thyroid axis. Our data demonstrate distinct and tissue-specific effects of TBBPA and diclazuril on local TH action and prove that the THAI mouse is a novel mammalian model to identify TH disruptors and their tissue-specific effects.  相似文献   

10.
环境内分泌干扰物对水生甲壳动物的影响   总被引:2,自引:0,他引:2  
汤保华  蔡磊明  王捷 《农药》2005,44(7):294-298
水生甲壳动物在水生态系统和环境安全评价中居于重要的地位,它们对存在于水中的外源化合物的影响非常敏感。在这些化合物中,环境内分泌干扰物是一类能够干扰动物正常生理过程的外源化合物,因此探讨环境内分泌干扰物对甲壳动物的性别分化、繁殖以及蜕皮的影响和相应的机理很有必要。  相似文献   

11.
Human Papillomavirus (HPV) is the main risk factor for cervical cancers and is associated with close to 36% of oropharyngeal cancers. There is increasing evidence that oral HPV transmission is related to sexual behavior but to our knowledge studies that involve women who have sex with women have not been performed. We examined the prevalence of oral HPV according to sexual behavior among a population-based sample of 118 women and have made some inferences of possible predictors of oral HPV infection. Women were categorized as heterosexual (history of vaginal sex and/or oral sex with males only, n = 75), bisexual (history of vaginal sex and oral sex with females, n = 32) and other (no history of vaginal sex but oral sex with females [homosexuals], virgins and women with incomplete sexual exposure data, n = 11) The prevalence of oral HPV infection was 12/118 (10.2%) for the overall study population and was not significantly different between heterosexual and bisexual women (10.7% (8/75) vs. 12.5% (4/32), p = 0.784). There was no oral HPV detected among homosexual women, virgins or among women where sexual exposure was unknown. Never smokers were more likely to be oral HPV+ compared to former smokers (Adjusted Odds Ratio (Adj OR) = 0.1, 95% CI, 0.0-1.1) and there was no difference in risk between never smokers and current smokers (Adj OR = 0.7, 95% CI, 0.1-4.6). Twenty-five percent (3/12) of oral HPV+ women had a history of HPV and/or genital warts compared to 9% (10/106) of oral HPV-women (p = 0.104). For the women with a history of vaginal sex (n = 110), oral HPV status was statistically significantly different according to oral sex exposure (p = 0.039). A higher proportion of oral HPV-positive women reported that they had no history of oral sex exposure compared to oral HPV-negative women (4/12, 33% vs. 7/98, 8%). The prevalence of cervical HPV infection did not vary between heterosexuals and bisexuals (35.7% (25/70) vs. 35.5% (11/31), p-value 0.411) and for all other women the cervical HPV prevalence was significantly lower (11.1%, 1/9). Our study suggests that smoking and sexual behavior involving males rather than female partners may be possible predictors of oral HPV infection in women. Further studies with larger sample size are needed to confirm these findings.  相似文献   

12.
    
Male sexual function in mammals is controlled by the brain neural circuits and the spinal cord centers located in the lamina X of the lumbar spinal cord (L3–L4). Recently, we reported that hypothalamic oxytocin neurons project to the lumbar spinal cord to activate the neurons located in the dorsal lamina X of the lumbar spinal cord (dXL) via oxytocin receptors, thereby facilitating male sexual activity. Sexual experiences can influence male sexual activity in rats. However, how this experience affects the brain–spinal cord neural circuits underlying male sexual activity remains unknown. Focusing on dXL neurons that are innervated by hypothalamic oxytocinergic neurons controlling male sexual function, we examined whether sexual experience affects such neural circuits. We found that >50% of dXL neurons were activated in the first ejaculation group and ~30% in the control and intromission groups in sexually naïve males. In contrast, in sexually experienced males, ~50% of dXL neurons were activated in both the intromission and ejaculation groups, compared to ~30% in the control group. Furthermore, sexual experience induced expressions of gastrin-releasing peptide and oxytocin receptors in the lumbar spinal cord. This is the first demonstration of the effects of sexual experience on molecular expressions in the neural circuits controlling male sexual activity in the spinal cord.  相似文献   

13.
    
Epinephrine is the most abundant catecholamine hormone, produced by the nervous system and adrenal glands. Endocrine disruption of epinephrine synthesis, secretion and signaling is less studied than steroid and thyroid hormones. Dichlorodiphenyltrichloroethane (DDT) is recognized as one of the most prominent environmental contaminants with a long half-life. It is a potent endocrine disrupter affecting sex steroid, mineralocorticoid, glucocorticoid and thyroid hormone production. Exposure to low doses of DDT is universal and begins in utero. Therefore, we studied adrenal medulla growth and function in male Wistar rats exposed to low doses of DDT during prenatal and postnatal development until puberty and adulthood, as well as rats exposed to DDT since the first day of postnatal development. All the exposed rats demonstrated lowered epinephrine blood levels, gradually reducing with age. DDT was found to inhibit the synthesis of tyrosine hydroxylase and affect the mitochondrial apparatus of epinephrine-producing cells during puberty and even after maturation. Low-dose exposure to DDT from birth resulted in more pronounced changes in adrenomedullary cells and a more profound decrease (up to 50%) in epinephrine secretion in adult rats. Prenatal onset of exposure demonstrated a mild effect on epinephrine-producing function (30% reduction), but was associated with lower rate of adrenal medulla growth during maturation and 25% smaller adrenal medullar size in adult rats. All subjects exposed to low doses of DDT failed to develop adaptive changes and restore proper epinephrine production. These results indicate a dysmorphogenetic effect of prenatal exposure and disruption of secretory function of adrenal chromaffin cells by postnatal exposure to DDT.  相似文献   

14.
Phthalates have been widely studied for their reprotoxic effects in male rodents and in particular on testosterone production, for which reference doses were established. The female rodent brain can also represent a target for exposure to these environmental endocrine disruptors. Indeed, a large range of behaviors including reproductive behaviors, mood-related behaviors, and learning and memory are regulated by sex steroid hormones. Here we review the experimental studies addressing the effects and mechanisms of phthalate exposure on these behaviors in female rodents, paying particular attention to the experimental conditions (period of exposure, doses, estrous stage of analyses etc.). The objective of this review is to provide a clear picture of the consistent effects that can occur in female rodents and the gaps that still need to be filled in terms of effects and mode(s) of action for a better risk assessment for human health.  相似文献   

15.
    
The primary cilium is an organelle with a central role in cellular signal perception. Mutations in genes that encode cilia-associated proteins result in a collection of human syndromes collectively termed ciliopathies. Of these, the Bardet-Biedl syndrome (BBS) is considered one of the archetypical ciliopathies, as patients exhibit virtually all respective clinical phenotypes, such as pathological changes of the retina or the kidney. However, the behavioral phenotype associated with ciliary dysfunction has received little attention thus far. Here, we extensively characterized the behavior of two rodent models of BBS, Bbs6/Mkks, and Bbs8/Ttc8 knockout mice concerning social behavior, anxiety, and cognitive abilities. While learning tasks remained unaffected due to the genotype, we observed diminished social behavior and altered communication. Additionally, Bbs knockout mice displayed reduced anxiety. This was not due to altered adrenal gland function or corticosterone serum levels. However, hypothalamic expression of Lsamp, the limbic system associated protein, and Adam10, a protease acting on Lsamp, were reduced. This was accompanied by changes in characteristics of adult hypothalamic neurosphere cultures. In conclusion, we provide evidence that behavioral changes in Bbs knockout mice are mainly found in social and anxiety traits and might be based on an altered architecture of the hypothalamus.  相似文献   

16.
    
Lactation is a physiological state of hyperprolactinemia and associated amenorrhea. Despite the fact that exact mechanisms standing behind the hypothalamus–pituitary–ovarian axis during lactation are still not clear, a general overview of events leading to amenorrhea may be suggested. Suckling remains the most important stimulus maintaining suppressive effect on ovaries after pregnancy. Breastfeeding is accompanied by high levels of prolactin, which remain higher than normal until the frequency and duration of daily suckling decreases and allows normal menstrual function resumption. Hyperprolactinemia induces the suppression of hypothalamic Kiss1 neurons that directly control the pulsatile release of GnRH. Disruption in the pulsatile manner of GnRH secretion results in a strongly decreased frequency of corresponding LH pulses. Inadequate LH secretion and lack of pre-ovulatory surge inhibit the progression of the follicular phase of a menstrual cycle and result in anovulation and amenorrhea. The main consequences of lactational amenorrhea are connected with fertility issues and increased bone turnover. Provided the fulfillment of all the established conditions of its use, the lactational amenorrhea method (LAM) efficiently protects against pregnancy. Because of its accessibility and lack of additional associated costs, LAM might be especially beneficial in low-income, developing countries, where modern contraception is hard to obtain. Breastfeeding alone is not equal to the LAM method, and therefore, it is not enough to successfully protect against conception. That is why LAM promotion should primarily focus on conditions under which its use is safe and effective. More studies on larger study groups should be conducted to determine and confirm the impact of behavioral factors, like suckling parameters, on the LAM efficacy. Lactational bone loss is a physiologic mechanism that enables providing a sufficient amount of calcium to the newborn. Despite the decline in bone mass during breastfeeding, it rebuilds after weaning and is not associated with a postmenopausal decrease in BMD and osteoporosis risk. Therefore, it should be a matter of concern only for lactating women with additional risk factors or with low BMD before pregnancy. The review summarizes the effect that breastfeeding exerts on the hypothalamus–pituitary axis as well as fertility and bone turnover aspects of lactational amenorrhea. We discuss the possibility of the use of lactation as contraception, along with this method’s prevalence, efficacy, and influencing factors. We also review the literature on the topic of lactational bone loss: its mechanism, severity, and persistence throughout life.  相似文献   

17.
    
The oxytocin system plays a role in stress responses and behavior modulation. However, the effects of oxytocin signaling on stress adaptation remain unclear. Here, we demonstrated the roles of oxytocin signaling as a biomarker under stress conditions in the peripheral tissues (the gills) and central nervous system (the brain). All the environmental stressors downregulated the expression of oxytocin receptors in the gills, and the alteration of the expression of oxytocin receptors was also found in the brain after the acidic (AC) and high-ammonia (HA) treatments. The number of oxytocin neurons was increased after double-deionized (DI) treatment. By transgenic line, Tg(oxtl:EGFP), we also investigated the projections of oxytocin neurons and found oxytocin axon innervations in various nuclei that might regulate the anxiety levels and aggressiveness of adult zebrafish under different environmental stresses. The oxytocin system integrates physiological responses and behavioral outcomes to ensure environmental adaptation in adult zebrafish. Our study provides insight into oxytocin signaling as a stress indicator upon environmental stressors.  相似文献   

18.
水平式珠磨机破碎微生物细胞动力学   总被引:1,自引:0,他引:1       下载免费PDF全文
在实验和前人研究的基础上,对微生物细胞珠磨破碎动力学进行了分析,提出细胞破碎过程中存在胞内产物释放、溶解和失活机理,据此建立了新的动力学模型,并对实验数据进行了回归,计算出有关参数。新的动力学方程能较好地解释产物失活现象。  相似文献   

19.
以环境水体中21种典型内分泌干扰物(EDCs)为目标物,对其在某城市污水处理厂厌氧-缺氧-好氧与MBR的组合工艺(A~2/O-MBR)中的迁移和归趋进行了长期研究。结果表明,该工艺对21种EDCs有很强的去除能力。EDCs在A~2/O-MBR工艺中泥水两相的迁移行为用泥水分配系数(Kd)来表示,得到的较高的泥水分配系数表明污泥对EDCs有一定的吸附作用,水相中大部分EDCs是通过污泥吸附来去除。  相似文献   

20.
    
The high prevalence of metabolic syndrome in persons with schizophrenia has spurred investigational efforts to study the mechanism beneath its pathophysiology. Early psychosis dysfunction is present across multiple organ systems. On this account, schizophrenia may be a multisystem disorder in which one organ system is predominantly affected and where other organ systems are also concurrently involved. Growing evidence of the overlapping neurobiological profiles of metabolic risk factors and psychiatric symptoms, such as an association with cognitive dysfunction, altered autonomic nervous system regulation, desynchrony in the resting-state default mode network, and shared genetic liability, suggest that metabolic syndrome and schizophrenia are connected via common pathways that are central to schizophrenia pathogenesis, which may be underpinned by oxytocin system dysfunction. Oxytocin, a hormone that involves in the mechanisms of food intake and metabolic homeostasis, may partly explain this piece of the puzzle in the mechanism underlying this association. Given its prosocial and anorexigenic properties, oxytocin has been administered intranasally to investigate its therapeutic potential in schizophrenia and obesity. Although the pathophysiology and mechanisms of oxytocinergic dysfunction in metabolic syndrome and schizophrenia are both complex and it is still too early to draw a conclusion upon, oxytocinergic dysfunction may yield a new mechanistic insight into schizophrenia pathogenesis and treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号