首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用UL 94垂直燃烧(UL 94)、极限氧指数(LOI)、热重分析(TGA)方法研究了红磷阻燃长玻纤增强聚酰胺6(LGFPA6)的阻燃性能和热性能。UL 94、LOI和TGA测试表明:随着红磷阻燃剂含量的增加,LOI值逐渐增大,T5%和热分解速率逐渐降低,残炭量增加;热降解动力学表明:红磷阻燃LGFPA6的平均热解活化能增加,说明红磷阻燃LGFPA6复合材料的热降解反应不易发生。  相似文献   

2.
利用无卤膨胀阻燃剂(IFR)阻燃长玻纤增强聚丙烯(LGFPP)复合材料,研究IFR的添加量对复合材料阻燃性能、热稳定性能、燃烧性能和力学性能的影响。结果表明,加入IFR使复合材料燃烧后生成了具有阻燃作用的炭层,显著提高了复合材料的阻燃性能。随IFR添加量的增加,复合材料的极限氧指数(LOI)逐渐提高,热释放速率峰值及其平均值、总热释放速率和生烟速率逐渐降低,力学性能略有下降。当IFR质量分数为20%时,复合材料的LOI和垂直燃烧等级分别达到了24.4%和UL 94 V-0级。  相似文献   

3.
将不同质量比的间苯二酚双[二(2,6-二甲基苯基)磷酸酯]/三聚氰胺氰尿酸盐(RDX/MCA)复配阻燃剂添加到热塑性聚氨酯弹性体(TPU)中,通过共混挤出制备了无卤阻燃TPU复合材料。采用极限氧指数(LOI)和垂直燃烧测试(UL 94)评估了复合材料的阻燃性能,利用万能拉力试验机测定了复合材料的力学性能,同时通过热氧老化、UV老化及水解老化实验考察了复合材料的耐老化性能。结果表明:当复配阻燃剂用量为15%、RDX与MCA的质量比为1:1时,TPU复合材料通过UL 94V-0级(1.6 mm)垂直燃烧测试,LOI达到28.1%,拉伸强度、断裂伸长率和撕裂强度分别为23.8 MPa、566%和95 kN/m。此外,复合材料分别经热氧老化、UV老化及水解老化168 h后,阻燃性能无明显变化,力学性能保持率均在75%以上,具有较好的耐老化性能。  相似文献   

4.
采用S–N–P阻燃剂通过熔融共混法制备了阻燃聚碳酸酯(PC)材料,通过极限氧指数(LOI)仪、垂直燃烧仪、万能电子试验机、冲击试验机和热重(TG)分析仪分别研究了阻燃PC的阻燃性能、力学性能和热性能。结果表明,S–N–P阻燃剂能显著提高PC的阻燃性能,当其质量分数为0.1%时,阻燃PC的LOI值达到35.5%,与纯PC相比提高了43.15%,能通过UL 94 V–0等级,同时拉伸强度相比纯PC提高了17.35%,弯曲强度提高了36.7%,断裂伸长率提高了121.6%,缺口冲击强度仅降低了7.63%;TG分析表明S–N–P阻燃剂能加速PC降解,从而加速炭层的形成起到阻燃作用。  相似文献   

5.
以硼酸和甲基三甲氧基硅烷为原料合成一种硼硅化合物甲基三硼硅烷,通过傅立叶变换红外光谱和热重(TG)分析确定其化学结构和热性能。TG分析数据表明,新型阻燃剂甲基三硼硅烷在氮气气氛和空气气氛中都有很好的热稳定性。将其以熔融共混的方法应用于聚对苯二甲酸乙二酯(PET)的阻燃研究,通过TG分析阻燃PET的热性能,实验表明,阻燃剂甲基三硼硅烷的加入可使PET的失重过程向高温推移,提高质量保持率。采用极限氧指数(LOI)和垂直燃烧测试(UL94)判定阻燃剂对PET的阻燃效果。当阻燃剂的质量分数仅为3%时,阻燃PET的LOI能达34.3%,UL94等级可达V–0级,自熄能力较好。  相似文献   

6.
《塑料科技》2015,(10):104-109
采用熔融共混法制备了聚酰胺6/多壁碳纳米管/十溴二苯乙烷-三氧化二锑(PA6/MWNTs/DBDPE-Sb2O3)阻燃复合材料,通过极限氧指数测试(LOI)、垂直燃烧测试(UL 94)、热重分析(TG)、差示扫描量热分析(DSC)、力学性能测试等方法研究了不同质量比的MWNTs/卤-锑阻燃体系对PA6/MWNTs/DBDPE-Sb2O3复合材料阻燃性能、热稳定性、力学性能以及非等温结晶行为的影响。结果表明:MWNTs的加入起到异相成核剂的作用,提高了复合材料的结晶速率且改变复合材料的晶型,同时使复合材料的热稳定性能得到改善。其中,当MWNTs含量为1%、DBDPE-Sb2O3含量为15%时,PA6/MWNTs/DBDPE-Sb2O3复合材料的LOI可达30.72%,垂直燃烧等级达到FV-0级,同时复合材料具有较好的力学性能。  相似文献   

7.
以次磷酸钠为原料合成异丁基次磷酸铝(A-MBPa)阻燃剂,利用氢核磁(1H NMR)、磷核磁(31P NMR)、元素分析、等离子发射光谱仪(i CP)及红外光谱仪确定了A-MBPa的结构,并通过熔融共混法制备出AMBPa阻燃尼龙6(PA6)复合材料。采用热重分析仪(TG)、极限氧指数(LOI)、垂直燃烧(UL94)及锥形量热仪等方法对其热性能及阻燃性能进行了表征。结果表明,随着A-MBPa添加量的增加,PA6/A-MBPa复合材料的热稳定性降低,热重测试后残余量增多;当A-MBPa添加量为20%时,PA6/A-MBPa复合材料的LOI为26.4%,UL94达到V-0级,且形成明显的炭层,此外PA6/A-MBPa复合材料的力学性能呈现出随着A-MBPa添加增多而降低的趋势。结果表明,A-MBPa在阻燃PA6体系中是一种有效的阻燃剂。  相似文献   

8.
《塑料》2014,(6)
以蒙脱土(MMT)协同有机次膦酸铝复配型阻燃剂制备新型无卤阻燃长玻纤增强尼龙6复合材料(FRLGFPA6)。采用氧指数(LOI)、垂直燃烧(UL-94)和锥形量热仪(Cone Calorimeter)测试研究MMT协同有机次膦酸铝复配型阻燃剂对LGFPA6阻燃性能的影响。结果表明:有机次膦酸铝复配型阻燃剂协同MMT可提高FRLGFPA6体系的阻燃性能,减缓FRLGFPA6的热降解速率,有效抑制烟毒产生以及减缓火灾增长;当MMT质量分数为2%时,体系的氧指数提高到34.2%,说明有机次膦酸铝复配型阻燃剂与MMT具有协同阻燃作用。  相似文献   

9.
以水镁石、多聚磷酸、十二胺为原料,通过对水镁石颗粒进行表面改性包覆多聚磷酸胺制备水镁石/多聚磷酸胺复合阻燃剂,并填充到乙烯-乙酸乙烯酯塑料(EVAC)中,进一步与经过预处理的玻璃纤维(GF)混合得到复合阻燃剂阻燃EVAC/GF复合材料。通过力学性能测试、热重分析、极限氧指数测试、UL94测试等表征手段考察了GF对复合材料阻燃性能与力学性能的影响。当复合阻燃剂质量分数为46%、预处理GF质量分数为4%、EVAC质量分数为50%时,复合材料的LOI为29.2%,拉伸强度为11.93 MPa,断裂伸长率为310.5%,达到UL94 V–0级别。  相似文献   

10.
采用钠基膨润土(Na-MMT)、卤锑复配阻燃剂和低密度聚乙烯(LDPE)树脂制备了阻燃复合材料,研究了改性Na-MMT协同卤锑复配阻燃剂对LDPE阻燃材料的燃烧性能、力学性能及热性能的影响。结果表明:改性Na-MMT替代部分卤锑复配阻燃剂时,其垂直燃烧等级均达到UL94 V-0级,极限氧指数均在32.0%以上。当改性Na-MMT质量分数为8%时,阻燃材料的极限氧指数达到33.8%;当改性Na-MMT质量分数为16%时,阻燃材料的力学性能最优。  相似文献   

11.
以双酚A型苯并嗪(BOZ)为成炭协效剂,二乙基次磷酸铝(ADP)为阻燃剂,通过熔融共混制备了阻燃尼龙66(PA66)复合材料。通过垂直燃烧测试(UL94)、极限氧指数(LOI)、锥形量热(Cone)、SEM以及TGA等考察了复合材料的协同阻燃性能及作用机制。结果表明:BOZ和ADP具有良好的协同阻燃效应。适量BOZ的引入不但可以提高材料的阻燃性能,还可以改善材料的热稳定性,并且对材料的力学性能影响不大。添加占体系质量分数0.3%BOZ和质量分数7.7%ADP时,ADP/BOZ阻燃PA66复合材料的垂直燃烧达到UL94V-0级,LOI达到了32.8%,拉伸强度、弯曲强度分别为81.52、111.11 MPa。阻燃机理研究表明:ADP/BOZ和ADP都是以气相阻燃作用为主的气相和凝聚相协同阻燃机制。  相似文献   

12.
《塑料》2015,(4)
以氢氧化镁(MH)为主阻燃剂、有机硅为协效阻燃剂,制备了无卤、低烟线型低密度聚乙烯(LLDPE)阻燃材料,利用氧指数(OI)和力学性能测试探讨了阻燃剂复配对该复合材料力学性能及阻燃性能的影响,并通过热重分析(TG)和差示扫描量热分析(DSC)考察了材料的结构和性能。结果表明:有机硅起到了协同阻燃的作用,在有机硅质量分数为6%时,复合材料的阻燃性能达到最佳,同时具有较好的力学性能。  相似文献   

13.
《塑料科技》2016,(7):42-46
将次磷酸铝(AHP)和环氧硅树脂(ESR)复配后添加到聚酰胺6(PA6)中制备了阻燃PA6材料。通过极限氧指数(LOI)和垂直燃烧(UL 94)测试研究了该阻燃PA6材料的阻燃性能,利用扫描电子显微镜(SEM)观察了阻燃PA6的残炭形貌,同时还通过拉伸、弯曲和冲击强度测试考察了阻燃PA6的力学性能。结果表明:当AHP用量为24%时,阻燃PA6材料通过了UL 94V-0测试,其LOI值达到25.6%;而以质量比为95:5的复配阻燃剂AHP/ESR对PA6进行阻燃,且阻燃剂用量仅为18%时,阻燃PA6材料通过UL 94V-0测试,其LOI值达到25.8%,这说明AHP与ESR对PA6具有良好的协效阻燃作用。与PA6/AHP复合材料相比,PA6/AHP/ESR复合材料的力学性能有所改善,这说明ESR的加入可提高材料的力学性能。此外,SEM测试结果显示,ESR的加入有助于阻燃PA6材料形成均一、致密的炭层,对下层的材料起到了很好的保护作用,从而提高了材料的阻燃性能。  相似文献   

14.
通过熔融共混制备出了聚对苯二甲酸丁二醇酯(PBT)/膨胀型阻燃剂(IFR)复合材料,采用UL 94垂直燃烧、极限氧指数测试(LOI)、扫描电子显微镜(SEM)、拉伸和冲击测试来表征其阻燃性能和力学性能;系统地研究了不同含量的IFR对PBT阻燃性能、力学性能的影响。实验结果表明,随着阻燃剂IFR含量的增加,PBT/IFR复合材料的阻燃性能逐渐提高,但其力学性能相应地下降。当阻燃剂质量分数为30%时,达到V-0级,综合性能最佳。  相似文献   

15.
应用混料设计试验方法研究了焦磷酸哌嗪(PAPP)、蒙脱土(MMT)和三聚氰胺聚磷酸盐(MPP)三组分复配阻燃剂在聚酰胺6(PA6)材料中的阻燃性能,通过极限氧指数、垂直燃烧级数(UL94)、微型燃烧量热仪(MCC)和热失重(TG)分析研究了不同配方对材料阻燃性能、燃烧性能的影响,优化了阻燃剂配方。结果表明:PAPP的质量分数为60.5%,MMT的质量分数为9.0%,MPP的质量分数为30.5%,该配方阻燃PA6材料的极限氧指数(体积分数)为39.5%,达到UL94 V-0(1.6 mm)级,阻燃剂在材料表面形成连续致密的炭层,700℃时残炭质量增加约10倍,有效抑制了材料的降解,显著降低燃烧过程中的热释放量。  相似文献   

16.
通过用新戊二醇磷酰氯对线型酚醛树脂(PF)酚羟基实行磷酰化封端处理,制备了线型PF基新戊二醇磷酸酯(NDMPP)阻燃剂,将其应用于阻燃PA6。采用核磁共振氢谱(1H NMR)、核磁共振磷谱(31P NMR)和傅立叶变换红外光谱(FTIR)表征了NDMPP的结构,采用热重(TG)分析研究其热分解行为,采用极限氧指数(LOI)和UL 94测试其阻燃PA6材料的阻燃性能,采用万能材料试验机和冲击试验机测试阻燃材料的力学性能。1H NMR,31P NMR和FTIR结果表明,线型PF中大约82%的羟基被磷酰化,NDMPP中的磷含量约为11.9%。TG分析结果表明,NDMPP阻燃剂在氮气气氛下起始分解温度超过250℃,600℃的残炭率达到43.5%,显示出良好的热稳定性。当NDMPP质量分数为25%时,其阻燃的PA6达到UL 94 V–0等级,LOI达到33.4%,而拉伸强度、缺口冲击强度、弯曲强度和弯曲弹性模量分别为纯PA6的76%,41%,72%和71%。  相似文献   

17.
以三羟乙基异氰尿酸酯、甲基丙酸基次膦酸、异丙醇铝为主要原料,合成了一种集"酸源""碳源""气源"于一体的单分子膨胀型有机次膦酸金属盐阻燃剂——三(丙酸乙酯基)异氰尿酸酯甲基次膦酸铝(FRMP),并通过熔融共混技术制备了不同FRMP添加量的热塑性弹性体(TPEE)/FRMP复合材料。采用傅里叶红外光谱仪、核磁共振波谱仪证实了FRMP的分子结构。采用极限氧指数(LOI)、微型量热(MCC)以及垂直燃烧(UL94)测试考查了复合材料的阻燃性能;采用热重分析仪(TG)、扫描电子显微镜(SEM)等研究了复合材料的阻燃机理;采用流变仪(DHR)和万能材料试验机分析了阻燃剂与TPEE的相容性。结果表明,FRMP可以单一实现TPEE的膨胀阻燃,具有良好的抗滴落性能,添加质量分数24%FRMP的TPEE复合材料的LOI由19.5%提升至31.7%,垂直燃烧达到UL94 V-0级。微型燃烧量热法(MCC)和TG测试表明FRMP能受热成炭减缓燃烧过程; SEM分析证实了FRMP的阻燃机理为膨胀型阻燃;流变性能与力学性能测试表明FRMP与TPEE具有良好的相容性。  相似文献   

18.
以尼龙6/玻璃纤维(PA6/GF)为基体材料,加入抗静电剂、无卤阻燃剂二乙基次膦酸铝(ADP)制备了矿用PA6/GF复合材料,考察了复合材料的抗静电性能和阻燃性能,以及ADP加入对复合材料抗静电性能、力学性能和热稳定性能的影响。结果表明,抗静电剂163及抗静电剂190的加入能提高PA6/GF复合材料的抗静电性能,当两者复配使用且质量比为1∶2时,材料表面电阻率降低至9.7×107Ω;阻燃剂ADP的加入能提高抗静电PA6/GF复合材料的阻燃性能,当阻燃剂质量分数达到15%时,复合材料阻燃等级达到UL94 V–0级;此外,无卤阻燃抗静电PA6/GF复合材料的综合性能优异,复合材料的抗静电性能、力学性能以及热稳定性能均能保持较好水平。  相似文献   

19.
《弹性体》2017,(3)
阻燃天然橡胶/氯化聚氯乙烯(NR/CPVC)热塑性弹性体(TPV)是在双辊炼塑机上采用动态硫化法制备而成。主要研究了单用磷氮阻燃剂(PNP)及PNP/三氧化锑(Sb_2O_3)复配阻燃剂对TPV力学性能及阻燃效果的影响,采用热重法(TG)对TPV进行了热氧降解性能分析及阻燃机理探讨。结果表明,少量Sb_2O_3即可与PNP形成有效的协效阻燃作用,并且采用质量分数为40%的PNP与质量质量分数为3%的Sb_2O_3复配阻燃的TPV的相对极限氧指数值(LOI)可达到26.9%,燃烧等级达到UL 94-V0级,只溢出稀薄白色烟雾,并具有较高的力学性能保持率,而添加质量分数为40%的PNP与质量分数为5%的Sb_2O_3复配阻燃剂的TPV的LOI值则达到28.1%。凝聚相成炭阻燃机理是PNP/Sb_2O_3的主要阻燃机理,而阻燃剂在高温下释放不燃性气体的气相阻燃也起到较好的辅助效果。  相似文献   

20.
通过磷系阻燃剂(FR)阻燃聚碳酸酯/丙烯腈-丁二烯-苯乙烯(PC/ABS)共混物,制备阻燃材料,研究磷系阻燃剂对PC/ABS阻燃复合材料的燃烧行为和热稳定性的影响。通过UL94垂直燃烧测试、极限氧指数(LOI)测试、马弗炉测试等表征方法,对PC/ABS阻燃复合材料的燃烧行为进了系统的研究。结果表明,磷系阻燃添加量为15%时,PC/ABS阻燃复合材料能够达到UL94 V-2级,LOI的值为29.3%,高温时的残炭量由11.2%提高到20.8%。其中FR阻燃剂在高温下可以产生磷酸酯类黏稠难燃物质,能够有效地起到凝聚相阻燃作用,提高了PC/ABS共混物材料的阻燃性能,表现出良好的阻燃效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号