首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
以农业废弃物核桃壳为原料,以及炼钢副产品铁水脱硫渣作为添加剂,采用共混法制备铁水脱硫渣-生物质活性炭。采用固定床反应器对铁水脱硫渣-生物质活性炭进行脱硫实验,考察入口SO2含量、床层温度、水蒸气含量、空速和氧气含量等工艺参数对其脱硫性能的影响。结果表明,随着入口SO2含量和空速的增加,铁水脱硫渣-生物质活性炭的穿透硫容和脱硫穿透时间均减小,床层温度是显著因素,水蒸气和氧气有利于铁水脱硫渣-生物质活性炭的化学吸附,铁水脱硫渣-生物质活性炭的脱硫最优工艺参数:即入口SO2含量、空速、床层温度、水蒸气含量和氧气含量分别为0.25%、750 h-1、85℃、9%和12%,其穿透硫容为274.1 mg/g和脱硫穿透时间为31 h。  相似文献   

2.
水蒸气活化法制备稻壳活性炭的研究   总被引:1,自引:0,他引:1  
研究了水蒸气活化法制备稻壳活性炭的工艺条件,探讨了炭化温度、活化温度、活化时间和水蒸气用量对活化效果的影响。最佳工艺条件为:炭化温度 450℃、活化温度 900℃、活化时间 90 min和水蒸气用量为炭化料的1.5倍,制备的活性炭碘吸附值 844 mg/g,亚甲基蓝吸附值 138 mL/g,产品得率 13.9%。这些指标与木质活性炭相当。且投资少,能耗低,具有良好的经济效益与社会效益。  相似文献   

3.
以神府3#煤为原料,采用KOH-水蒸气活化法制备了煤基活性炭和氢气.考察了浸渍比、活化温度、活化时间对活性炭吸附性能和活化过程中氢气产量的影响,并对其活化机理进行了探讨.结果表明,活性炭碘值、亚甲基蓝值以及氢气产量受这些工艺参数影响很大,当浸渍比为0.5,活化温度为700℃,单元活化时间为10 min时,所制得的活性炭性能较好,碘值达到837 mg/g,亚甲基蓝吸附值达到431 mg/g,此时H2产量约33.1 mmol/g煤.  相似文献   

4.
杨晓霞  李晶  周安宁 《应用化工》2012,(8):1364-1367
以神府半焦为原料,通过水蒸气催化活化法制备了活性炭和氢气。考察了不同金属氧化物对活性炭吸附性能、活化过程中氢气产量的影响。结果表明,氧化物对活性炭吸附性能以及氢气产量影响很大。当氧化铁和氧化钙共同催化时,所制得的活性炭性能较好,氢气产量较大;活性炭碘吸附值为678 mg/g,亚甲基蓝值为55 mg/g,BET比表面积为775 m2/g,总孔容达0.414 8 cm3/g,平均孔径为3.902 nm,活化阶段氢气的产量为535 mmol/g半焦,约占活化过程释放气体总量的73.90%。  相似文献   

5.
水蒸气活化法制备椰壳活性炭的研究   总被引:7,自引:0,他引:7  
王宁  苏伟  周理  周亚平 《炭素》2006,(2):44-48
以炭化椰壳为原料,以水蒸气为活化荆制备活性炭,系统分析了水蒸气流量、活化时间、蒸气用量等因素对活性炭性能的影响。结果表明:在活性炭未被过度活化的条件下,活性炭烧失率的大小可以直接反映出其比表面积。活化时间和水蒸气用量是影响活性炭制备成本的两个重要因素,提高水蒸气流量可以缩短活化时间,但会使水蒸气用量增大。孔径分布计算结果显示,活性炭的孔径基本都集中在2nm以下,烧失率越高,活性炭的孔径分布就越宽。  相似文献   

6.
氢气是一种理想的洁净能源。从能源角度和环境角度考虑,发展生物质制氢技术都具有重要的意义。生物质制氢技术主要包括热化学法和生物法,其中热化学法主要是将生物质气化或液化,再进行重整和水蒸气变换反应,获得氢气。本文综述了生物质热化学转化(包括气化、超临界水气化、热裂解等)制氢技术的研究进展,并对典型的制氢技术作了评述和展望。  相似文献   

7.
以磷酸为活化剂,采用化学活化法,利用花生壳制备活性炭。考察了浸渍时间、活化剂浓度、活化剂用量、活化时间和活化温度对活性炭吸附性能的影响,确定了制备花生壳活性炭的最佳工艺条件。实验结果表明,制备花生壳活性炭的最佳工艺条件为:浸渍时间为12 h、磷酸浓度为60%、磷酸用量为1.2 mL/g、活化时间为2 h、活化温度为400℃时。制备的花生壳活性炭具有良好的吸附性能。  相似文献   

8.
基于Fluent软件的生物质气化模拟研究   总被引:1,自引:0,他引:1  
基于Fluent软件,建立流化床反应器模型,对生物质-水蒸气气化过程进行模拟,研究温度对生物质气化过程的影响,同时分析碳转化率、气体成分以及气体总产率的变化规律。结果表明:模拟结果与实验数据吻合良好,碳转化率及气体总产率随温度的升高而升高,床层高度对CO、 H2生成具有较大影响。模拟计算条件下,氢气体积分数高达55%,这说明水蒸气作为气化介质有利于气化过程中产生更多的H2。Fluent软件能够很好的对生物质气化过程进行模拟,可以作为生物质气化研究的一个重要工具。  相似文献   

9.
用于PEMFC的天然气水蒸气制氢系统   总被引:1,自引:0,他引:1       下载免费PDF全文
代磊  李明  胡鸣若 《化工学报》2009,60(Z1):90-94
针对质子交换膜燃料电池(PEMFC)的应用要求,开发了一个包括天然气水蒸气重整、CO变换和变压吸附净化的制氢工艺过程,并着重对重整反应和变压吸附的操作条件进行了实验研究。考察了温度、空速和水碳比对重整反应的影响,得到适宜的工艺操作条件,实验结果表明:温度650℃、水碳比6、空速42h-1时,氢气含量为70.21%,甲烷转化率为77.41%;分析了温度、流速对变压吸附脱除CO效果的影响,结果表明:在0.2MPa、40℃和吸附、脱附时间120s的条件下,产品气中CO浓度接近于1×10-6,经过多次循环后产品气质量稳定,可以连续获得满足80W质子交换膜燃料电池要求的高纯度氢气。  相似文献   

10.
秦雯  周志明  程振民 《化工学报》2016,67(2):563-572
甲烷水蒸气重整工艺是现阶段最主要的工业制氢技术,催化剂颗粒形状和反应器操作条件是影响重整反应器性能和产物组成的重要因素。首先从颗粒尺度研究催化剂形状对甲烷水蒸气重整反应的影响,在不同的反应温度和压力下,计算并比较了球形、柱形和环形催化剂的效率因子,其大小顺序为:柱形 < 球形 < 环形。其次,将反应器床层的质量、热量和动量传递与环形催化剂颗粒的扩散-反应方程相结合,建立了用于描述甲烷水蒸气重整工业反应器的一维轴向数学模型。计算并分析了反应器进口温度和压力对反应器床层的温度和压力分布、催化剂效率因子以及甲烷转化率和各组分浓度分布的影响,确定了适宜的工业反应器进口温度和压力,分别为773 K和3 MPa。  相似文献   

11.
宁思云  应浩  徐卫  孙云娟  尹航  贾爽  刘光华 《化工进展》2019,38(3):1308-1315
以木炭为原料,选用KOH、K2CO3、KHCO3、KNO3为催化剂,在上吸式固定床气化炉中,进行水蒸气催化气化制取合成气实验。考察了不同催化剂、催化剂用量、水蒸气流量、气化温度对木炭水蒸气气化的炭转化率、产氢率、气体组成体积分数和H2/CO值的影响。实验通过炭吸收催化剂溶液来负载催化剂,实验结果表明:4种催化剂都可提高木炭气化效率,在浸渍相同质量分数的催化剂溶液下,催化活性顺序为KOH>K2CO3>KHCO3>KNO3。碳转化率及产氢率都随着催化剂溶液浓度的增加而增大,但浓度过高增加趋势逐渐变缓,催化剂溶液质量分数在4%~6%较为合适。增加水蒸气流量,气体产物中H2体积分数增大,H2/CO值增大。升高温度可促进炭气化反应,950℃时碳转化率和产氢率分别达到98.7%和145.23g/kg。实验可得到H2/CO比1.53~4.09范围间的合成气,可用于合成甲醇、甲烷、二甲醚等燃料。  相似文献   

12.
沈亚兰  刘阳  俞海淼 《化工进展》2019,38(3):1324-1328
以松木木屑为生物质原料,在两段式反应器上进行甲烷、水蒸气对生物质催化气化影响的实验研究,考察了甲烷与生物质之比α、水碳比S/C对气体产率、碳转化率、焦油产率、焦油组分和露点温度影响的变化规律。结果表明:α从0增加到0.4,合成气中H2的产率增加了57.4%,甲烷的加入有利于生成富含氢气的合成气;α为0.2时碳转化率最高,为86.9%,焦油产率下降了30.5%,第二、五类焦油的产率达到最低,可见适量CH4的添加能促进焦油的转化,特别是大分子焦油和酚类的反应。随着S/C的提高,H2产率升高,CO产率降低;S/C从1增加到1.5,各类焦油的含量均有所降低,当S/C进一步增加到2时,第二、五类焦油含量却有所上升,说明水蒸气可以促进焦油向气体分子转化的反应,但过量的水蒸气抑制酚类和大分子焦油的分解。总之,甲烷和水蒸气的适量添加均可以提高合成气中H2的含量,降低焦油产率,提高合成气的品质,有利于气化产物的进一步利用。  相似文献   

13.
以全钢型废旧轮胎为原料,通过热解、活化、浸渍、焙烧的流程制备了三种热解炭催化剂,分别为轮胎热解炭(Raw char)、轮胎热解活性炭(AC)和负载Zn的活性炭(Zn/AC)。采用N2吸/脱附、SEM、EDS、XRD等表征方法对催化剂进行了一系列表征和分析,发现CO2/H2O活化可显著提高催化剂BET比表面积,最高可达380 m2·g-1,有效改善催化剂表面结构性质,同时浸渍法使催化剂表面负载大量ZnO活性位。对三种催化剂在纤维素热解焦油重整制氢过程中的催化性能进行了研究,发现Raw char(600℃)具有最佳催化效果,相较于空白组(500℃),热解气中H2体积分数提高了12.4%,达到19.3%,其次为Zn/AC(500℃)组的17.8%,实现了低温下催化纤维素焦油热解制得高产率H2。  相似文献   

14.
以木屑炭为原料,在上吸式固定床气化炉中进行水蒸气气化制备合成气,考察了温度和水蒸气流量对木屑炭水蒸气气化的产物分布、炭转化率、产气率、组成含量和H2/CO值的影响。结果表明:升高温度有助于木屑炭气化,炭转化率和产气率分别在950 ℃下达到最大值99.2%和4.16 L/g,但温度升高会导致H2从65.8%降至61.2%,同时H2/CO也呈下降趋势,从10.3降至3.35;水蒸气流量的增加可提升H2,从59.8%升至62%,但流量升至0.6 g/min时气化结果趋于稳定。水蒸气气化的最佳操作条件为900 ℃,水蒸气流量0.6 g/min,此条件下炭转化率、产气率和热值分别达到93.3%、4.06 L/g和9.04 MJ/m3,H2/CO值为4.11,适合于合成甲烷。  相似文献   

15.
李静  张启俭  齐平  韩丽  邵超 《工业催化》2017,25(6):19-23
二甲醚是一种理想的氢载体,可用于解决氢的储存和运输。以Pt/TiO_2为部分氧化催化剂,结合Ni/Al_2O_3重整催化剂,考察钛前驱体和焙烧温度对二甲醚部分氧化重整制氢反应的影响。结果表明,以Ti(C4H9O)4为原料制备的TiO_2为金红石相,Ti(SO4)2或Ti O(OH)2为原料制备的TiO_2为锐钛矿相;以Ti(C4H9O)4为原料制备的Pt/TiO_2-E催化剂催化性能略好,转化率接近100%,H2收率约90%,表明金红石相TiO_2负载的Pt催化剂略佳;以Ti(SO4)2为原料制备的Pt/TiO_2-S催化剂500℃焙烧可获得金红石相TiO_2。与Pt/Al_2O_3催化剂相比,Pt/TiO_2催化剂具有更好的催化性能,H2收率超过90%,而Pt/Al_2O_3催化剂H2收率约80%。  相似文献   

16.
朱珉  陈时熠  李蒙  宋业恒  张磊  向文国 《化工学报》2019,70(6):2244-2251
提出了一种化学链甲烷干重整联合制氢工艺。该工艺由还原反应器、干重整反应器、蒸汽反应器和空气反应器组成,在实现制氢的同时获得可变H2/CO比的合成气。借助ASPEN plus软件和小型流化床实验台,在等温条件下,温度900℃,采用Fe2O3/Al2O3载氧体,对该工艺进行热力学分析和实验验证。结果显示,当铁氧化物被还原至FeO/Fe时,干重整反应器内甲烷转化率可以达到98%,CO产率可以达到94%。干重整反应器中同时发生甲烷干重整和部分氧化反应,载氧体内部晶格氧可以有效降低积炭并提高合成气H2/CO比。积炭发生于晶格氧消耗殆尽时。积炭进入蒸汽反应器,发生气化反应,降低氢气纯度。  相似文献   

17.
化学链重整直接制氢技术进展   总被引:5,自引:1,他引:4       下载免费PDF全文
曾亮  巩金龙 《化工学报》2015,66(8):2854-2862
化学链重整直接制氢技术使用固态金属氧化物作为氧载体代替传统重整过程中所需的水蒸气或纯氧,将燃料直接转化为高纯度的合成气或者二氧化碳和水,被还原的金属氧化物则可以与水蒸气再生并直接产生氢气,实现了氢气的近零能耗原位分离,是一种绿色高效的新型制氢过程。根据产物和供热方式的不同,可以将化学链重整直接制氢工艺分为双床系统和三床系统两类,并对各系统中氧载体与反应器的设计与选择进行了分析。通过Elingham图对不同氧载体的氧化还原能力进行比较,选取适于直接制氢的金属氧化物,并讨论了氧载体材料研发的最新进展。化学链制氢反应器设计应根据不同原料和产品的特点,选择合适的气-固接触方式,以强化化学链重整直接制氢效率。  相似文献   

18.
以甲酸、过氧化氢和脂肪酸甲酯为原料,通过改变工艺条件合成环氧脂肪酸甲酯。考察过氧化氢浓度、甲酸用量、反应温度、反应时间、过氧化氢滴加时间以及过氧化氢用量对环氧化产品环氧值和碘值的影响。经单因素实验得到最佳工艺条件:甲酸用量为脂肪酸甲酯质量的6%,反应温度80 ℃,反应时间4 h,过氧化氢滴加时间30 min,50%过氧化氢用量为脂肪酸甲酯质量的32%。与传统工艺相比,新工艺条件降低了甲酸用量,提高了过氧化氢浓度与反应温度,缩短了反应时间。  相似文献   

19.
采用微型流化床反应分析仪(MFBRA)考察了不同温度(T,750~950℃)和水蒸气分压(SP,10%~30%)下生物质焦油水蒸气重整过程中的气体生成、气体产物中总碳转化和焦油转化等反应特性,求算反应动力学,并与焦油热裂解特性进行比较。在热裂解过程中,随温度增加,各气体(H2、CH4、CO、CO2)产率和气体产物中的总碳转化率增加,反应时间缩短。而在焦油水蒸气重整过程中,等温下的反应时间明显延长,且H2、CH4、CO产率和气体产物中的总碳转化率显著提升,而CO2产率在850℃时有最大值。在焦油水蒸气重整过程中,不仅有焦油裂解,还有裂解产物与水蒸气的反应,促进碳转化。在950℃、SP=30%条件下,气体产物中的总碳转化率达到92.34%。水蒸气作用下,气体组分的产率和气体产物中的总碳转化率增加,而等温条件下的反应速率下降。水蒸气分压对各气体组分的影响具有差异性。随分压增加,CO、CH4的生成速率和气体产物中的总碳转化的反应速率增加;H2生成速率逐渐下降,速率稳定段扩大;CO2生成速率在850℃时有最大值。采用均相模型求取焦油水蒸气重整反应过程中的活化能,气体产物的生成活化能(H2、CO、CO2和CH4)、气体产物中的总碳转化及焦油转化的活化能明显偏低,分别为90.10、42.01、58.56、64.92、61.44和63.26 kJ/mol,对应数值明显小于焦油热裂解,说明水蒸气对焦油重整反应的促进作用。最后,将焦油热裂解动力学数据与文献数据对比,验证了MFBRA对焦油水蒸气重整反应测试的可行性和分析结果的准确性。  相似文献   

20.
Methane conversion to C2 hydrocarbons and hydrogen has been investigated in a needle-to-plate reactor by pulsed streamer and pulsed spark discharges and in a wire-to-cylinder dielectric barrier discharge (DBD) reactor by pulsed DC DBD and AC DBD at atmospheric pressure and ambient temperature. In the former two electric discharge processes, acetylene is the dominating C2 products. Pulsed spark discharges gives the highest acetylene yield (54%) and H2 yield (51%) with 69% of methane conversion in a pure methane system and at 10 SCCM of flow rate and 12 W of discharge power. In the two DBD processes, ethane is the major C2 products and pulsed DC DBD provides the highest ethane yield. Of the four electric discharge techniques, ethylene yield is less than 2%. Energy costs for methane conversion, acetylene or ethane (for DBD processes) formation, and H2 formation increase with methane conversion percentage, and were found to be: in pulsed spark discharges (methane conversion 18–69%), 14–25, 35–65 and 10–17 eV/molecule; in pulsed streamer discharges (methane conversion 19–41%), 17–21, 38–59, and 12–19 eV/molecule; in pulsed DBD (methane conversion 6–13%), 38–57, 137–227 and 47–75 eV/molecule; in AC DBD (methane conversion 5–8%), 116–175, 446–637, and 151–205 eV/molecule, respectively. The immersion of the γ-Al2O3 pellets in the pulsed streamer discharges, or in the pulsed DC DBD, or in the AC DBD has a positive effect on increasing methane conversion and C2 yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号