首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
High pressure and high temperature experiments were performed on single-wall carbon nanotube bundles up to 14.5 GPa and 1800 K. Depending on the thermodynamic conditions, we have observed three different behaviors: at ambient temperature and for pressure lower than 24 GPa, minor structural changes are observed. Depending on the loss of hydrostatic conditions or on the combined application of pressure and temperature, partial or total graphitization is observed. For pressures of 14.5 GPa and temperatures of 1800 K the nanotubes are irreversibly transformed into cubic diamond, showing that it is possible to synthesize under high pressure and high temperature pure sp3 carbon structures from single-wall carbon nanotubes. In the case of iodine intercalated nanotubes, the same conditions of 14.5 GPa and 1800 K lead also to the transformation into diamond. No evidence of incorporation of iodine in the sp3 carbon structure was found. On the basis of our results, we discuss possibilities for new carbon-carbon composite engineering from single-wall carbon nanotube bundles.  相似文献   

2.
Hydrogen adsorption in different carbon nanostructures   总被引:1,自引:0,他引:1  
Hydrogen adsorption in different carbonaceous materials with optimized structure was investigated at room temperature and 77 K. Activated carbon, amorphous carbon nanotubes, SWCNTs and porous carbon samples all show the same adsorption properties. The fast kinetics and complete reversibility of the process indicate that the interaction between hydrogen molecules and the carbon nanostructure is due to physisorption. At 77 K the adsorption isotherm of all samples can be explained with the Langmuir model, while at room temperature the storage capacity is a linear function of the pressure. The surface area and pore size of the carbon materials were characterized by N2 adsorption at 77 K and correlated to their hydrogen storage capacity. A linear relation between hydrogen uptake and specific surface area (SSA) is obtained for all samples independent of the nature of the carbon material. The best material with a SSA of 2560 m2/g shows a storage capacity of 4.5 wt% at 77 K.  相似文献   

3.
Lizhen Gao  E. Yoo  Weike Zhang 《Carbon》2010,48(11):3250-3255
Hydrogen storage by chemisorption on multiwalled carbon nanotubes (MWCNTs) was studied. Pristine MWCNTs could only store 0.1 wt.% of hydrogen at 573 K and ambient pressure, however, oxidation treatment to produce defects and subsequent loading with a Pd-Ni catalyst significantly increased the hydrogen storage capacity up to 6.6 wt.%. The hydrogen desorption temperature was above 500 K and an in situ diffuse reflectance IR Fourier-transform spectroscopy study indicated that the hydrogen was stored in the form of CHx (x = 1, 2) species. The study indicated that the most appropriate hydrogen chemisorption temperature was 550 K. For comparison, oxidized unloaded MWCNTs, oxidized MWCNTs separately loaded with either Pd or Ni, unoxidized fresh MWCNTs loaded with Pd-Ni, and activated carbon loaded with Pd-Ni were studied. The results showed that the defects and Pd-Ni catalyst were two essential factors for the high chemisorption of hydrogen on carbon nanotubes.  相似文献   

4.
Three-dimensional growth of well-aligned high-purity multiwall carbon nanotubes (CNTs) is achieved on silicon, nickel-coated silicon and cobalt-coated silicon substrates by thermal decomposition of a botanical carbon source, camphor, with different catalyst concentrations. Field emission study of as-grown nanotubes in a parallel-plate diode configuration suggests them to be an efficient emitter with a turn-on field of ∼1 V/μm (for 10 μA/cm2) and a threshold field of ∼4 V/μm (for 10 mA/cm2). Maximum current density lies in a range of 20-30 mA/cm2 at 5.6 V/μm with significant reversibility. Prolonged stability test of camphor-grown CNT emitters suggests a life time of ∼5 months under continuous operation. A new feature, metal-assisted electron emission from CNTs, has been addressed. Isolated nanotubes used as a cold cathode in a field emission microscope reveal the pentagonal emission sites and hence the atomic structure of the nanotube tips.  相似文献   

5.
The influence of carbon nanotubes (CNTs) addition on basic mechanical, thermal and electrical properties of the multiwall carbon nanotube (MWCNT) reinforced silicon nitride composites has been investigated. Silicon nitride based composites with different amounts (1 or 3 wt%) of carbon nanotubes have been prepared by hot isostatic pressing. The fracture toughness was measured by indentation fracture and indentation strength methods and the thermal shock resistance by indentation method. The hardness values decreased from 16.2 to 10.1 GPa and the fracture toughness slightly decreased by CNTs addition from 6.3 to 5.9 MPa m1/2. The addition of 1 wt% CNTs enhanced the thermal shock resistance of the composite, however by the increased CNTs addition to 3 wt% the thermal shock resistance decreased. The electrical conductivity was significantly improved by CNTs addition (2 S/m in 3% Si3N4/CNT nanocomposite).  相似文献   

6.
Q. Yang  Y. Tang  Y.S. Li 《Carbon》2008,46(4):589-595
Diamond thin films (on silicon wafers) and carbon nanotubes (CNTs) (on Inconel plates) were simultaneously synthesized at temperatures ?550 °C without any additional catalyst. The synthesis was achieved in a microwave plasma enhanced chemical vapor deposition (CVD) reactor with graphite etching in a gas mixture of hydrogen and methane. The substrate stage consisted of an Inconel 600 plate and a stainless steel plate separated by a 53 mm long quartz tube. Silicon wafers were placed on the stainless steel plate located at the upper part of the substrate stage, while Inconel plates were placed at the lower part of the substrate stage. During the deposition, the substrates were heated only by the plasma and the substrate temperature was controlled by the applied microwave power, which ranged from 350 W to 950 W. The backside temperatures of Si wafers ranged from 290 °C to 550 °C, higher than the corresponding temperatures of Inconel 600, which ranged from 220 °C to 350 °C. The Raman spectroscopic and electron microscopic results show that the thin films deposited on Si consist of well faceted polycrystalline diamond, and that the black soot deposited on Inconel plates is composed of multiwall carbon nanotubes as long as one millimeter.  相似文献   

7.
We demonstrate that microwave-assisted heating in 5 mL of nitric acid eliminates impurities, such as amorphous carbon, carbon nanoparticles, and metals, from multi-walled carbon nanotubes (MWNTs). Heating the closed reaction vessel under microwave irradiation at 160 °C for 30 min is a very effective means of purifying the MWNTs. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images confirm that these reaction conditions are beneficial for removing the impurities and ensuring that the MWNTs remain intact. In contrast, a purification temperature of 180 °C provides too strongly oxidizing conditions that destroy the MWNTs. The ratio of the G and D bands in the Raman spectra also confirms that a temperature of 160 °C is optimal. The defect peak that we observed in the differential thermogravimetry (DTG) analysis of the raw material was not present after microwave purification. The presence of metal impurities in the MWNTs can be reduced significantly when using this method.  相似文献   

8.
Electrodes made of carbonized polyacrylonitryle (cPAN) nanofibers, with and without embedded multiwall carbon nanotubes (MWCNTs) were fabricated by the electrospinning (ES) process and evaluated as anodes in glucose fuel cell (FC) application. The effect of several processing and structural characteristics, such as the presence of MWCNTs, polymer concentration in the ES solution and silver electroless plating on FC performance were measured. The carbon electrodes were successful as anodes showing significant activity even without additional silver catalyst, with noticeable improvement by the incorporation of MWCNTs. The orientation of graphitic layers along the fiber axis and the coherence of layer packing were shown to be important for enhanced electrode activity. The maximal values of open circuit voltage (OCV) and peak of power density (PPD) of unmetalized electrodes, 0.4 V and 30 μW/cm2 respectively, were found to be for composite cPAN/CNT electrode. Electroless silver metallization of the carbon nanofiber electrodes leads to much better FC performance. Maximal values of OCV and PPD of silvered carbon electrodes were measured to be about 0.9 V and 400 μW/cm2, respectively. Thus, carbonized nanofibers with embedded MWCNTs may form a good basis for glucose FC anodes, but better metallization and cell-configuration allowing proper mixing are required.  相似文献   

9.
Guoqing Ning  Fei Wei  Guohua Luo  Yong Jin 《Carbon》2005,43(7):1439-1444
A system combining pulse chemical vapor deposition (CVD) reaction and cryogenic gas sorption (BET) measurement capabilities was designed to allow the sequential synthesis and online analysis of single-wall carbon nanotubes (SWNTs). Cooling treatment in liquid nitrogen (77 K) during BET measurement was found to be efficient for restoring catalysts when deactivation occurs after carbon deposition. By this treatment, the methane conversion could be enhanced by up to seven times, such as from 5.8% to 42.6% mol. When the temperature changes from 850 °C to 77 K, the metal particles on the tip of nanotubes might contract and be separated from the graphite layer of the nanotubes, leading to more active sites on metal particles being exposed. The single point BET analysis of SWNT has been tested as an efficient method for the rapid online analysis of SWNTs produced by CVD.  相似文献   

10.
Data on temperature-dependent electrical resistance of buckypaper flakes are presented in this paper. The buckypapers are composed of ropes of aligned single-walled carbon nanotubes doped with HNO3, which are treated as mixed systems with their properties being dependent on the treatment performed. The measurements cover rather wide temperature range from 300 up to 900 K. In case of untreated samples, curves with two well-defined activation energies are seen, which are discussed in terms of different DC conductivity mechanisms, with a great attention paid to the parallel metal-semiconductor system. In turn, in heat-treated samples the resistance is found nearly temperature-independent except for the significant peak centered at about 600-650 K. Observed characteristics are also fitted using the parallel model, although with a less accuracy suggesting influence of another conductivity mechanisms. At any rate, the resistance peak is possibly related to the metal/non-metal transition observed in disordered solids.  相似文献   

11.
Tingkai Zhao  Yongning Liu  Jiewu Zhu 《Carbon》2005,43(14):2907-2912
Large amounts of amorphous carbon nanotubes (ACNTs) were prepared with Co-Ni alloy powders as catalyst in hydrogen gas atmosphere by a modified arc discharging furnace which can control temperature during the electric arcing process. The experimental results indicate that the cooperative function of temperature and catalyst plays an important role in the soot production rate and the relative ACNT purity. When temperature increases from 25 °C to 700 °C, the soot production rate increases from around 1 g/h to 8 g/h, the best relative ACNT purity at 600 °C can reach up to 99% compared to the room temperature sample. Without catalyst, only plate graphite is formed at 25 °C and very few carbon nanotubes are found when temperature increases to 600 °C. TEM, SEM, HRTEM and XRD analysis showed that the as-prepared carbon nanotubes are almost amorphous. The soot production rate is 8 g/h and diameter range of amorphous carbon nanotubes is about 7-20 nm, respectively.  相似文献   

12.
A comprehensive investigation on the kinetics of combustion of multiwall carbon nanotubes (MWCNTs) produced by vapour chemical deposition has been undertaken. The kinetics parameters were determined from isothermal and non-isothermal combustion tests i.e. by both thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The activation energy of CNT combustion was found to be about 150 kJ mol−1. The oxidation of carbon nanotubes (CNTs) appears to be a single step reaction well represented by a cylindrical shrinking core model. The consistency of this model was assessed both by comparing the activation energy extracted from TGA and DSC, and by theoretical considerations on the geometrical development of CNT oxidation. The influence of oxygen concentration on CNT combustion was also studied. Finally, these results combined with those obtained by self-ignition tests in baskets lead to recommendations for a safe handling and storage of CNTs.  相似文献   

13.
We report on the mechanical behavior of a dense brush of small-diameter (1-3 nm) non-catalytic multiwall (2-4 walls) carbon nanotubes (CNTs), with ∼10 times higher density than CNT brushes produced by other methods. Under compression with spherical indenters of different radii, these highly dense CNT brushes exhibit a higher modulus (∼17-20 GPa) and orders of magnitude higher resistance to buckling than vapor phase deposited CNT brushes or carbon walls. We also demonstrate the viscoelastic behavior, caused by the increased influence of the van der Waals’ forces in these highly dense CNT brushes, showing their promise for energy-absorbing coatings.  相似文献   

14.
Faming Zhang  Jianfei Sun  Gang Wang 《Carbon》2005,43(6):1254-1258
The diamond phase has been converted directly from carbon nanotubes by spark plasma sintering (SPS), at 1500 °C under 80 MPa pressure, without any catalyst being involved. Well-crystallized diamond crystals, with particle sizes ranging from 300 nm to 10 μm were obtained. After sintering at 1200 °C, the tips of the carbon nanotubes were found to be open and the conversion from carbon nanotubes to diamond started. The mechanism for carbon nanotube to diamond conversion in SPS may be described as that from carbon nanotubes to an intermediate phase of carbon nano-onion, and then to diamond. It is believed that the plasmas generated by the low-voltage, vacuum spark, via a pulsed DC in the SPS process, played a critical role in the low pressure diamond formation. This SPS process provides an alternative approach to diamond synthesis.  相似文献   

15.
R.B. Chen  C.C. Tsai  F.L. Shyu 《Carbon》2004,42(14):2873-2878
Magnetic properties of finite zigzag carbon nanotubes are studied within the tight-binding model. The spin-B interaction (Zeeman splitting) causes the metal-semiconductor transition and thus produces a large persistent current (J) with special jump structures. This effect makes all zigzag carbon nanotubes exhibit a gigantic paramagnetism. It also destroys the periodicity of magnetic properties. The dependence on the magnetic flux, the length (w), the radius (r), the temperature (T), and the chirality (zigzag or armchair) is strong. The amplitude of J quickly decreases with increasing of (wrT). Zigzag carbon nanotubes differ significantly from armchair carbon nanotubes (or infinite zigzag carbon nanotubes) in features such as magnetic susceptibility and in special structures in J.  相似文献   

16.
Diameter-controlled single-wall carbon nanotubes (SWCNTs) have been synthesized using Co, Fe/Co and Rh/Pd alloy nanoparticles trapped within the one-dimensional channels of a mesoporous materials (Folded Sheets Mesoporous material: FSM-16) by catalyst-supported chemical vapor deposition (CCVD) using ethanol as carbon source at 973-1173 K. The SWCNTs synthesized are characterized by transmission electron microscopy, Raman spectroscopy and photoluminescence spectroscopy. The yield, diameter distribution and quality of the SWCNTs strongly depend on the reaction temperature during CCVD. The product synthesized at 1173 K contains only SWCNTs, in marked contrast to those synthesized at lower temperatures. As the reaction temperature decreases, the relative abundance of multi-wall carbon nanotubes against SWCNTs significantly increases, whereas the mean diameter of SWCNTs increases as reaction temperature increases. The results show that a careful control of the reaction temperature is crucial to fabricate diameter-controlled SWCNTs from the channels of FSM-16.  相似文献   

17.
Geon-Woong Lee 《Polymer》2008,49(7):1831-1840
Nitric acid treated single and multi wall carbon nanotubes (SWNT and MWNT) have been dispersed in polypropylene using maleic anhydride grafted polypropylene (MA-g-PP) and butanol/xylene solvent mixture. SWNT exfoliation was characterized by Raman and UV-vis-NIR spectroscopies. Evidence for hydrogen bonding between maleic anhydride grafted polypropylene and nitric acid treated nanotubes was obtained using infrared spectroscopy. Polypropylene/carbon nanotube composites were melt-spun into fibers. Dynamic mechanical studies show that for fibers containing 0.1 wt% SWNT, storage modulus increased by 5 GPa at −140 °C and by about 1 GPa at 100 °C, suggesting temperature dependent interfacial strength. The crystallization behavior has been monitored using differential scanning calorimetry and optical microscopy. Control fibers exhibited 27% shrinkage at 160 °C, while the shrinkage in the composite fibers was less than 5%. Fibers heat-treated to 170 °C show very narrow polypropylene melting peak (peak width about 1 °C).  相似文献   

18.
Electro- and magneto-transport properties of amorphous carbon films doped with iron element have been systematically studied. The electro-transport mechanism of the films is dominated by thermal activation at T > 200 K, Mott-type variable range hopping (VRH) at 200 K > T > 60 K and Efros-Shklovskii type (ES-) VRH at T < 60 K. An anomalous giant positive magnetoresistance (MR) 6.40% is found at the ES-VRH range, which is attributed to the spin blockage effect. At high temperatures, an anomalous Hall effect (AHE) is also found with a large AHE coefficiency 49.6 μΩcm/T. Electron energy loss spectroscopy (EELS) reveals that iron atoms chemically bond with carbon matrix. These iron carbides exist as amorphous nanoparticles with a diameter of 6-12 nm, which is regarded as the origin of the MR and AHE. Besides, the films are p-type conductive at high temperature, which might be related with the iron doping. These properties make iron doped amorphous carbon films applicable in carbon-based solar cells, magnetic sensors or some other multifunctional devices.  相似文献   

19.
Multiwall carbon nanotube elastomeric composites: A review   总被引:3,自引:0,他引:3  
Nanostructured materials gained great importance in the past decade on account of their wide range of potential applications in many areas. A large interest is devoted to carbon nanotubes that exhibit exceptional electrical and mechanical properties and can therefore be used for the development of a new generation of composite materials. Nevertheless, poor dispersion and poor interfacial bonding limit the full utilization of carbon nanotubes for reinforcing polymeric media.In this paper, recent advances on carbon nanotubes and their composites will be presented through results of the author's research, essentially based on filled elastomeric networks. The intrinsic potential of carbon nanotubes as reinforcing filler in elastomeric materials will be demonstrated. It will be shown that, despite a poor dispersion, small filler loadings improve substantially the mechanical and electrical behaviors of the soft matrix. With the addition of 1 phr of multiwall carbon nanotubes in a styrene-butadiene copolymer, a 45% increase in modulus and a 70% increase in the tensile length are achieved. Straining effects investigated by atomic force microscopy and infrared and Raman spectroscopies, provide interesting results for the understanding of the mechanical behavior of these nanotube-based composites. All the experimental data lead to the belief that the orientation of the nanotubes plays a major role in the mechanical reinforcement. The strong restriction in equilibrium swelling in toluene with the MWNT content is not ascribed to filler-matrix interfacial interactions but to the occlusion of rubber into the aggregates. On the other hand, carbon nanotubes impart conductivity to the insulator matrix. Between 2 and 4 phr, the conductivity increases by five orders of magnitude reflecting the formation of a percolating network. Changes in resistivity under uniaxial extension completed by AFM observations of stretched composites bring new insights into the properties of these composites by highlighting the contribution of orientational effects.  相似文献   

20.
Carbon powder was produced by a pulsed arc ignited between two carbon electrodes submerged in ethanol, and was comprised of both micro- and nano-particles. The measured magnetic properties of the mixed “raw” powder at 20 and 300 K were: saturation magnetization Ms ∼ 0.90-0.93 emu/g, residual magnetization Mr = 0.022 and 0.018 emu/g, and coercive force Hc = 11 and 8 Oe, respectively. The data lead to conclusion that the powder consisted of ferromagnetic particles with a critical temperature much higher than 300 K. Magnetic particles in solution were separated by means of bio-ferrography. It was found that the magnetically separated particles included chains of ∼30-50 nm diameter spheres, and nanotubes and nanorods with lengths of 50-250 nm and diameters of 20-30 nm. In contrast, the residual particles which passed through the bio-ferrograph consisted of 1 μm and larger micro-particles, and nano-particles without any definite shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号