首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
通过在麦田土壤施用控释氮比例(CNR)不同的缓控释掺混肥料,研究其对小麦生长和土壤性状的影响。结果表明,CNR分别为25%、40%的低氮处理(23—11-6)能显著增加小麦生物产量,二者与普通掺混肥处理(添加颗粒有机肥,MF)均能显著降低土壤体积质量,提高土壤持水性;MF处理小麦产量显著高于其他各处理;对照处理小麦植株全磷含量显著高于其他各施肥处理,说明不施肥条件下,能够促进小麦对磷素的吸收。  相似文献   

2.
《Ceramics International》2023,49(18):29923-29932
Mesoporous bioactive glass nanoparticles (MBGNs) have gained considerable attention as multifunctional platforms for simultaneously releasing ions and phytotherapeutic compounds. Thus, in the first part of this study, MBGNs based on the 53SiO2–4P2O5–20CaO–23Na2O (wt %) (S53P4) composition were synthesized by a microemulsion assisted sol-gel method. More precisely, P2O5 was substituted with B2O3 and Na2O with MgO and/or ZnO. For B containing MBGNs all ions were successfully incorporated into the borosilicate structure without inducing crystallisation. In contrast, for S53P4 a poorly crystalline hydroxyapatite phase was identified. All MBGNs had a typical spherical shape with an internal radial network of mesopores. Additionally, for S53P4 a second fraction of particles with a smaller size and compact core was observed. Secondly, the feasibility of MBGNs as nanocarriers for gallic acid (GA) was evaluated. All drug-loaded samples showed a similar in vitro release profile which can be divided into three main phases: burst release, slow release and sustained release. Among the different compositions, S53P4 exhibited the highest cumulative release, whereas B and Mg containing particles exhibited the opposite. The presence of Zn in the MBGN compositions improved their antibacterial effect against both E. coli and S. aureus. Moreover, it was shown that depending on the MBGNs’ composition, the antibacterial activity of GA loaded MBGNs can be enhanced. Thus, the results proved that MBGNs can be used as controlled drug delivery system and, by tailoring the composition, a synergistic antibacterial effect can be achieved, considering that GA and biologically active ions are simultaneously released.  相似文献   

3.
Acrylic type polymeric systems having degradable ester bonds linked to 5-aminosalicylic acid were synthesized and evaluated as materials for drug delivery. 5-Aminosalicylic acid, as an important drug in the treatment of inflammatory bowel diseases, was linked to 2-hydroxyethyl methacrylate by activated ester methodology in two-step and one-pot procedures to obtain methacryloyloxyethyl 5-amino salicylate. The resulting methacrylic derivative of 5-aminosalicylic acid was copolymerized with methacrylamide, 2-hydroxyethyl methacrylate and methyl methacrylate (in 1:3 mole ratio) by free radical polymerization method in N,N-dimethylformamide solution, utilizing α,ά-azoisobutyronitrile as initiator at the temperature range of 65–70 °C. The obtained polymers were characterized by FT-IR, 1H NMR, 13C NMR and elemental analysis. The average molecular weights of the polymers bearing drug units as side substituents of the acrylic backbone were determined by gel permeation chromatography and their polydispersity indices resulted in the range of 1.6–1.8. Release studies of 5-aminosalicylic acid were performed into dialysis bags by hydrolysis in buffered solutions (pH 1, 7 and 8) at 37 °C. Detection of hydrolysis by UV spectroscopy at selected intervals showed that the drug can be released by selective hydrolysis of the ester bond at the side of drug moiety. The release profiles indicated that the hydrolytic behavior of polymeric prodrugs is strongly based on the polymer hydrophilicity and the pH value of the hydrolysis solution. The results suggest that these systems could be useful for preparation of a controlled release formulation of 5-aminosalicylic acid in colon.  相似文献   

4.
Polyanion/gelatin complexes including poly(methacrylic acid) (PMAA)/gelatin, poly(acrylic acid) (PAA)/gelatin, and heparin/gelatin are investigated as pH‐sensitive gels for controlled protein release. Polyanions can interact with gelatin and form amorphous precipitates within a certain pH range, which is affected by the polyanion nature. The entrapment efficiency of model proteins (myoglobin, cytochrome c, and pepsin) into the complexes is rather high (>80%). By using a modified colloid titration that mixes a solution of gelatin and model proteins titrated with polyanion solution, myoglobin and cytochrome c are found to interact with polyanions by electrostatic forces at low pH, while pepsin either interacts with the polyanion when the pH is below its isoelectric point (IEP) or complexes with gelatin at a pH above IEPpepsin. At pH 7.4 all the complexes dissociate and proteins are rapidly released within a few hours. The complexes are stable and the proteins are retained within a certain pH range, which is related to the polyanion type (e.g., 5.0–2.0 for PMAA, 4.6–1.2 for PAA, and <4.3 for heparin). The three processes of complex formation, dissociation, and protein release have a good correlation. In addition, the protein release transition takes place within a rather narrow pH range (ca. 0.5 units) and the protein nature has little effect on the protein release profile. The high protein entrapment efficiency and good pH sensitivity of the protein release can be mainly attributed to the electrostatic attractive interactions between proteins and polyanion or gelatin. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1416–1425, 2001  相似文献   

5.
We synthesized a drug delivery system of poly(N‐isopropylacrylamide)‐b‐oligo(methyl methacrylate) (PNIPAAm‐b‐OMMA) via polycondensation of two homopolymers in 1,4‐dioxane. The products are characterized by FT‐IR and 1H‐NMR spectra and TEM. The PNIPAAm‐b‐OMMA copolymer micelles in aqueous solution present the same lower critical solution temperature (LCST) as the unmodified PNIPAAm, owing to the formation of a core–shell micellar structure that the hydrophilic shell shields the hydrophobic inner OMMA core from interacting with water. The micelle carriers exhibit two heterogeneous microdomains: a hydrophobic inner core capable of highly solubilizing hydrophobic prednisolone molecules, plus a hydrated outer shell that stabilizes this micellar structure below its LCST. Moreover, the micelle carriers show reversible thermoresponsive aggregation/dispersion in response to temperature cycles through the LCST. By using the antiinflammation drug prednisolone as model drug, it is found that the PNIPAAm‐b‐OMMA drug carrier could prolong the release time and control the release amount by changing the temperature. Accordingly, this copolymer micelle may provide as an effective drug carrier for drug control and release. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号