首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
为解决聚己二酸/对苯二甲酸丁二酯(PBAT)可发性差的问题,以乙烯–甲基丙烯酸甲酯共聚物(EMA)作为扩链剂对PBAT进行扩链改性。结果表明,随着EMA含量的增加,PBAT样品的特性黏度和支化度逐渐提高,说明扩链反应成功;PBAT样品的结晶温度和结晶度略有增加,结晶性能得到改善;PBAT样品的流变性能得到改善,说明样品的可发性逐步改善。然后,以氮气为物理发泡剂,通过固相发泡法制备PBAT微孔泡沫。结果表明,随着EMA含量的增加,PBAT泡沫的泡孔尺寸、泡孔密度和发泡倍率逐渐增加。随着发泡温度的升高,PBAT泡沫的泡孔尺寸和发泡倍率逐渐增大,泡孔密度稍有减小。  相似文献   

2.
以己二酸丁二醇酯-对苯二甲酸丁二醇酯(PBAT)共聚物为基体,加入不同含量的扩链剂,经熔融共混后,制备扩链PBAT。结果表明,随着扩链剂含量的增加,熔融混合的扭矩值、凝胶含量和结晶温度逐渐升高,熔融温度基本不变,结晶度下降,黏弹性得到改善;以超临界CO2为物理发泡剂,通过间歇式釜压发泡法制备微孔PBAT泡沫,随着扩链剂含量的增多,发泡样品的泡孔尺寸变小,泡孔密度逐渐增加,当扩链剂的份数为0.8时,泡孔尺寸为4.4 μm,泡孔密度为1.65×1010个/cm3。  相似文献   

3.
采用多环氧基团增容剂制备了聚乳酸/聚己二酸对苯二甲酸丁二酯(PLA/PBAT)共混物,研究了增容剂含量对于PLA/PBAT共混体系的结晶和流变性能的影响。并采用高压釜发泡的方法进行PLA/PBAT共混物的间歇发泡,研究增容剂对发泡材料泡体结构的影响。结果表明,增容剂加入后会降低其绝对结晶度,以及显著改善PLA/PBAT共混体系的熔体弹性,提高其可发性;增容剂可以有效地改善共混体系的泡体结构,降低共混物发泡密度,提高其发泡倍率。  相似文献   

4.
通过添加不同含量的扩链剂(CE)对2种牌号聚乳酸(PLA)进行改性,对改性PLA进行注塑发泡,研究了扩链剂用量对PLA熔体流变性能、试样的泡孔形态和力学性能等的影响,并比较了不同PLA泡沫的泡孔结构和力学性能的差异。结果表明,PLA的熔体流动速率随着扩链剂的加入明显降低,同时熔体强度得到提高;随着扩链剂含量的增多,注塑级和挤出级PLA的发泡效果和力学性能都逐渐提高,扩链剂含量达到0.8 %(质量分数,下同)时,取得最好的泡孔结构和最优的力学性能;改性注塑级发泡试样较改性挤出级发泡试样有更高的力学性能。  相似文献   

5.
通过熔融共混制备聚乳酸(PLA)/聚(己二酸丁二酯?对苯二甲酸丁二酯)(PBAT)共混物。以环氧扩链剂(CE)为相容剂,研究了CE含量对共混物的流变行为、结晶行为的影响,并研究了CE含量为5份的共混物在冷结晶温度下的发泡行为以及泡沫的拉伸性能。结果表明,共混体系的相容性、结晶速率随着CE含量的增加而增加、可发性提高,在添加了5份CE的共混物中得到了微纳复合泡孔,泡孔密度达到1013 个/cm3,相对于PLA泡沫,共混物泡沫的断裂伸长率提高了40 %。  相似文献   

6.
以乙烯甲基丙烯酸缩水甘油酯共聚物(GEMA)为增容剂,采用熔融共混法制备了聚乳酸(PLA)/高密度聚乙烯(PE-HD)增容合金。以CO2为发泡剂进行釜压发泡,制备出PLA/PE-HD增容合金泡沫。结果表明,加入GEMA后,聚合物合金的结晶能力有所下降和流变性能略有提高;随着GEMA含量的增加,PE-HD分散相尺寸减小,数量增多,聚合物合金发泡样品的泡孔结构可以实现从复合泡孔到单一泡孔的转变。  相似文献   

7.
PBAT/PLA共混物的热力学性能和结晶性能的研究   总被引:1,自引:0,他引:1  
利用熔融共混制备己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物(PBAT)/聚乳酸(PLA)共混物,采用Joncryl~? ADR-4368对共混体系进行改性,通过差示扫描量热法研究了共混比例和扩链剂的加入对该共混体系的热力学性能的影响,通过小角激光光散射和广角X射线衍射研究了共混比例和扩链剂的加入对该体系的结晶行为的影响,利用Elmendorf撕裂和拉伸测试分析该共混体系的力学性能。结果表明,共混之后PLA和扩链剂对PBAT有着成核作用。PBAT/PLA共混体系中PLA的冷结晶温度显著下降,PLA含量为20%时扩链剂的加入最终使得PLA的冷结晶消失。扩链剂的加入提高了PBAT的结晶能力,但未改变其晶型。PBAT/PLA共混后力学性能显著改善,且扩链剂的加入使得断裂伸长率提高约一倍。  相似文献   

8.
采用扩链剂对聚乳酸(PLA)进行扩链改性,研究了扩链剂对PLA流变性能的影响。采用3种不同类型的化学发泡剂:发泡剂A(发泡母粒)、发泡剂B\[自制复合发泡剂:偶氮二甲酰胺(AC发泡剂)/碳酸氢钠(NaHCO3)\]、发泡剂C(自制改性AC发泡剂),利用单螺杆挤出机对PLA进行挤出发泡。采用扫描电子显微镜观察分析了发泡材料的断面泡孔结构。结果表明,加入扩链剂可有效提高PLA的熔体强度和黏度及降低其熔体流动速率,改善PLA的发泡效果,扩链剂含量为0.8份(质量分数,下同)时,发泡材料的发泡效果最好;实验所用的3种发泡剂中,发泡剂C的发泡效果最好,发泡剂含量为1.5份时,发泡样品的表观密度较小(0.6 g/cm3),泡孔直径最小(约为57 μm),泡孔密度最大(约为7.69×10^6个/cm3),泡孔分布均匀,无明显泡孔破裂和连通现象。  相似文献   

9.
通过熔融共混法制备了聚乳酸/聚己二酸对苯二甲酸丁二酯/聚倍半硅氧烷(PLA/PBAT/POSS)复合材料,并利用超临界二氧化碳(CO_2)固相发泡法对复合材料进行发泡,通过差示扫描量热仪、高级动态流变仪和扫描电子显微镜等对复合材料的结晶行为、流变行为和发泡行为进行了研究。结果表明,POSS粒子对基体树脂具有增塑效应,PLA的冷结晶温度降低,结晶度提高;复合体系的流变性能明显提高,其发泡材料的泡孔密度和发泡倍率均随着POSS粒子含量的增加而增大,当加入7份(质量份,下同)POSS时,发泡材料的泡孔密度提高至8.25×10~7个/cm~3,发泡倍率达到13倍;POSS粒子对PLA泡沫的泡孔形态具有显著的调控作用。  相似文献   

10.
将PBAT作为增韧剂加入PLA基体中得到复合材料,以超临界CO_2流体作为物理发泡剂,采用间歇釜式发泡法成功制备了PBAT/PLA复合微孔发泡材料。DSC和WXRD测试结果表明,PBAT与PLA具有良好的相容性。2种材料的复合可以改变PLA晶型,抑制结晶能力,降低材料对温度的敏感性。超临界CO_2发泡实验表明,随着PBAT含量的增加,达到相同发泡效果所需的发泡条件也得到了提高。同时,PBAT的加入使泡孔尺寸分布更集中,材料的泡孔结构更均匀稳定。而且,适中的工艺条件和PBAT含量可以获得性能最佳的发泡材料。  相似文献   

11.
硅酸钙对PBAT流变性能与发泡行为的影响   总被引:1,自引:0,他引:1  
通过熔融共混法制备聚己二酸/对苯二甲酸丁二酯(PBAT)/硅酸钙复合材料,对复合材料的结晶行为、流变行为和发泡行为进行研究。结果表明,活性硅酸钙粉体的加入降低PBAT的分子链运动能力,导致绝对结晶度由15.17%降低至13.79%。此外,PBAT的熔体弹性和可发性随着硅酸钙加入而提高。发泡成型后,PBAT泡沫的泡孔密度和发泡倍率都随着硅酸钙含量增加出现上升趋势,加入质量分数4%的硅酸钙后,PBAT发泡材料的泡孔密度提高至5.93×10~7个/cm~3,发泡倍率达到15.26倍。硅酸钙对PBAT发泡材料的泡孔形态具有显著的调控作用。  相似文献   

12.
以聚丁二酸丁二醇酯(PBS)为基体,加入不同含量的扩链剂,通过熔融共混法制备扩链PBS样品。随后以超临界CO2作为物理发泡剂,通过釜压发泡法在87 ℃下对PBS进行物理发泡。结果表明,随着扩链剂含量的增加,PBS的结晶温度先升高后略微下降,结晶度略微提高,黏弹性改善;随着扩链剂含量的增加,泡孔尺寸和发泡倍率逐渐减小,泡孔密度逐渐增加;当扩链剂含量为8 %(质量分数,下同)时制备的扩链PBS微孔泡沫的泡孔尺寸为9.2 μm,泡孔密度为1.93×109 个/cm3。  相似文献   

13.
《塑料》2015,(6)
为了改善聚对苯二甲酸乙二醇酯(PET)的流变性能,提高其发泡性能,以均苯四甲酸二酐(PMDA)对PET进行了熔融扩链改性,采用动态旋转流变仪表征扩链改性PET的流变性能。并利用间歇发泡装置,对扩链改性PET进行超临界流体发泡实验。研究了不同含量扩链剂的扩链效果,以及不同的发泡温度对PET扩链体系泡沫结构的影响。结果表明:PMDA的加入能够有效改善PET的弹性模量和复数黏度,PMDA质量分数为0.75%时,扩链效果最佳,PMDA质量分数为1%时发泡倍率更大。PMDA的添加能够有效拓宽发泡温区,随着发泡温度的升高,PET泡沫发泡倍率先增大后减小。在264℃时,实验制得发泡倍率为21倍、泡孔直径为46~50μm、泡孔密度为2.64×108~2.83×108个/cm3的低密度PET泡沫。  相似文献   

14.
以CO2为物理发泡剂,采用间歇式升温发泡法制备了纯聚乳酸(PLA)发泡体系,质量分数为10%的丁二醇–己二酸–对苯二甲酸共聚酯(PBAT)增韧PLA发泡体系以及在此基础上添加1份硫酸盐类成核剂(LAK)后所制备的三元发泡体系,绘制了不同饱和压力下这3种体系的CO2解吸附曲线,研究了发泡工艺中CO2饱和压力以及解吸附时间对这3种体系泡孔结构的影响。结果表明,3种体系的CO2吸附率相当且解吸附曲线相似。随饱和压力的增大,3种体系泡孔尺寸均不同程度地减小,泡孔密度增大,尺寸分布趋于均匀。PBAT的加入减小了PLA的泡孔尺寸,增大了泡孔密度,在此基础上添加LAK可进一步改善PLA的泡孔结构,且在CO2的压缩条件(饱和压力为5 MPa)下,PBAT与LAK更能发挥其改善PLA泡孔结构的作用。随解吸附时间的增加,3种体系泡孔尺寸均不同程度地增大,泡孔密度减小,泡孔尺寸分布均匀性变差。在解吸附过程中,PLA/PBAT/LAK体系的泡孔尺寸始终最小,泡孔密度始终最大。  相似文献   

15.
《塑料》2016,(3)
将NPCC与PBAT熔融共混制备复合材料,并使用超临界CO_2间歇发泡法制备发泡材料。并对复合材料的结晶行为、流变性能、力学性能和发泡行为进行研究。结果表明:活性NPCC会提高PBAT的结晶温度和结晶度;PBAT复合体系的拉伸强度和断裂伸长率也在特定NPCC含量下出现上升趋势;同时,随着活性NPCC含量的增加,PBAT的熔体弹性和可发性线性提高。PBAT/NPCC复合材料泡沫的泡孔密度和发泡倍率也随着NPCC含量的增加而出现上升趋势,PBAT/NPCC泡沫的泡孔形态显著改善。  相似文献   

16.
通过熔融共混法制备聚乳酸/聚丁二酸丁二醇酯(PLA/PBS)共混体系和PLA/PBS/反应型增容剂(Cp)共混体系,并通过间歇式釜压发泡成型制得泡沫样品,研究了PLA/PBS共混体系和PLA/PBS/Cp共混体系的结晶行为、相态结构、流变行为和发泡行为。结果表明,PBS的加入对PLA降温结晶的影响不大,其熔体弹性有所提升,且PBS含量的变化对共混体系泡孔形态的影响较小;在PLA/PBS/Cp共混体系中,Cp的加入对共混体系中PLA的结晶性能有明显的提高;另外随着Cp含量的增加,其熔体弹性也显著增加;Cp可以有效地提高PLA与PBS间的相容性,改善泡孔的形态。  相似文献   

17.
采用环氧型扩链剂KL-E4370对热塑性聚酰胺弹性体(TPAE)进行了扩链改性,通过旋转流变仪、差示扫描量热仪(DSC)和扫描电子显微镜(SEM)等对扩链前后TPAE的流变性能、结晶性能和发泡性能进行了表征,并研探讨了扩链反应的机理。结果表明,TPAE的熔体黏弹性较差,可发性差;加入扩链剂能够有效提高TPAE的支化程度;通过对TPAE进行扩链改性可使其复数黏度增加一个数量级以上,提高熔体黏弹性,从而增大发泡倍率,拓宽发泡温区,改善泡孔破裂及合并问题;但扩链后TPAE的结晶性能下降,起始结晶温度降低20 ℃左右,使得泡孔收缩情况明显;扩链剂含量为1 %(质量分数,下同)的TPAE泡沫的发泡倍率从纯TPAE的5.5倍增加到了约9倍,泡孔直径达50 μm。  相似文献   

18.
熔融扩链反应制备PLA/PBAT多嵌段共聚物   总被引:1,自引:0,他引:1  
以六亚甲基二异氰酸酯(HDI)为扩链剂,在催化剂辛酸亚锡作用下,通过熔融扩链反应制备了聚乳酸(PLA)/聚(己二酸丁二酯/对苯二甲酸丁二酯)(PBAT)多嵌段共聚物.研究了反应时间、温度、扩链剂用量等工艺条件对PLA/PBAT共聚物结构、相对分子质量的影响.用红外光谱仪、核磁共振仪、偏光显微镜等分析手段对PLA、PBAT和PLA/PBAT共聚物进行了分析表征.结果表明,通过扩链反应,PLA的分子链中引入了新的嵌段,其相时分子质量及柔韧性大幅度提高.  相似文献   

19.
采用密炼机制备了聚苯乙烯/聚乳酸(PS/PLA)共混物,以超临界二氧化碳(CO2)为物理发泡剂,采用釜压法制备了PS/PLA共混物泡沫。采用差示扫描量热仪、偏光显微镜和扫描电子显微镜研究了PLA等温结晶行为、PS/PLA共混物的相态结构和PS/PLA共混物泡沫的泡孔结构。结果表明,反应型增容剂使PLA的等温结晶速率提高,晶体尺寸降低;增容剂能够促进PLA在PS中的分散;PLA的加入在发泡过程中能够起到异相成核作用,PLA的结晶有利于气泡的增长和稳定。  相似文献   

20.
漆娟  罗钟琳  王标兵 《工程塑料应用》2021,49(2):123-128,135
通过熔融共混法制备了Joncryl ADR 4370F扩链剂增容聚乳酸/聚对苯二甲酸/己二酸丁二酯(PLA/PBAT)共混物,采用旋转流变仪分别研究了扩链剂和PBAT含量对PLA/PBAT共混物动态流变行为的影响。通过动态应变扫描确定了PLA/PBAT共混物的线性黏弹区,应变选取1%;PLA/PBAT共混物的储能模量和损耗模量随着角频率的增加而增大,但复数黏度却降低,共混物熔体呈现剪切变稀行为,是典型的假塑性流体流动特征;随着扩链剂和PBAT含量的增加,共混物的储能模量、损耗模量和复数黏度增大;Han曲线分析表明,扩链剂的加入改善了共混物的相容性;动态时间扫描表明,时间对纯PLA和PBAT的储能模量基本没有影响,PLA/PBAT共混物的储能模量随时间的延长而降低,扩链剂和PBAT含量不同,使得时间对共混物储能模量的影响不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号