首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对CeO2纳米流体进行了池沸腾传热特性研究,考察了CeO2/水基纳米流体的热导率,静态接触角以及沸腾后表面沉积情况对沸腾传热的影响。结果表明,CeO2纳米流体可提高沸腾传热系数,且纳米流体最佳质量分数为0.05%,其沸腾传热系数较去离子水提高36%。热导率以及接触角随纳米流体质量分数的增加而增加,在本实验范围内,热导率最大增加1%;而纳米流体接触角从50.5°增加到92.9°;表面沉积随纳米流体的质量分数增加越来越明显,去离子水在沉积表面的接触角发生较大变化(51.4°~134.4°)。纳米流体的热导率影响可忽略不计;而接触角和沸腾表面颗粒沉积对纳米流体的强化传热作用影响较大。  相似文献   

2.
向多壁碳纳米管引入羟基基团,改善了其在制冷剂R141b中的分散性和稳定性。同时研究了不同质量分数纳米流体热导率、表面颗粒沉积、接触角变化对核沸腾传热性能的影响。结果表明:羟基化碳纳米流体强化沸腾传热,强化率随质量分数的增加而增加,沸腾后期有所下降。在测试浓度范围内,质量分数为0.05%,热通量为87.4 kW·m-2时,强化率达到最大168%。流体的热导率随着质量分数的增加而增大,质量分数为0.10%时其热导率是纯R141b的1.18倍。分析认为:纳米流体热导率的增加、表面沉积颗粒及纳米颗粒扰动是强化传热的主要影响因素,接触角变化的影响可忽略不计。结论由质量分数为0.03%纳米流体沸腾过程高速成像得到验证。  相似文献   

3.
通过络合-沉淀法合成氧化铜纳米颗粒,制备铜颗粒的直径在40~100 nm,晶型为正六面体。利用“两步法”制备水基氧化铜纳米流体。考察了不同质量分数纳米流体的热导率、接触角变化和加热表面颗粒沉积对核沸腾传热性能的影响,并利用可视化记录沸腾过程气泡行为。结果表明:在测试质量分数范围内,传热系数随热通量增加而增大,当质量分数达到0.1%时,强化率最大为146.1%。经过分析可知纳米流体的接触角度、热导率、颗粒沉积以及颗粒扰动对水基氧化铜纳米流体强化传热作用均有影响。通过高速摄像采集质量分数0.07%纳米流体沸腾过程验证结论的可靠性。并对纳米流体核沸腾传热过程建立气泡动力学经验模型,模型计算结果与实测值相对偏差在±10%以内。  相似文献   

4.
三角形微通道内纳米流体流动与换热特性   总被引:2,自引:2,他引:0       下载免费PDF全文
刘冉  夏国栋  杜墨 《化工学报》2016,67(12):4936-4943
以去离子水为基液,通过两步法制备出粒子体积分数为0.1%的SiO2、Al2O3、TiO2纳米流体,并分别在流体内添加一定量的表面活性剂以提高其稳定性。利用紫外分光光度计和热物性分析仪,对3种纳米流体稳定性和热导率进行测试。此外,为研究纳米流体在三角形微通道内的流动与换热特性,利用红外热像仪观察通道底面温度分布。结果表明,表面活性剂会对纳米流体吸光度产生影响,且粒子会随着时间的增加逐渐团聚。纳米颗粒的添加可有效提高工质的热导率并强化对流换热,微通道底面温度明显降低,且均温性得到改善。3种纳米流体中,TiO2纳米流体呈现出更加良好的导热和换热性能。  相似文献   

5.
对δ-Al2O3-R141b纳米流体在0.1 MPa系统压力下进行了池内沸腾传热性能测试。沸腾表面为2000#砂纸打磨的光滑紫铜表面,沸腾热通量为30~130 kW·m-2,纳米流体的体积浓度为0.1%、0.01%、0.001%。实验表明纳米流体强化了沸腾传热特性,且强化倍数随着纳米流体浓度的增加而增大。体积浓度为0.1%时,沸腾传热系数比基液增大了50.2%。分析认为表面颗粒沉积是强化换热的主要因素,而接触角的变化在此可以忽略。与Rohsenow关联式相比较,纯液体和较低浓度的纳米流体的实验数据与关联式吻合较好,相对误差最大不超过13%,高浓度时吻合较差关联式不再适用。  相似文献   

6.
对δ-Al2O3-R141b纳米流体在0.1 MPa系统压力下进行了池内沸腾传热性能测试。沸腾表面为2000#砂纸打磨的光滑紫铜表面,沸腾热通量为30~130 kW·m-2,纳米流体的体积浓度为0.1%、0.01%、0.001%。实验表明纳米流体强化了沸腾传热特性,且强化倍数随着纳米流体浓度的增加而增大。体积浓度为0.1%时,沸腾传热系数比基液增大了50.2%。分析认为表面颗粒沉积是强化换热的主要因素,而接触角的变化在此可以忽略。与Rohsenow关联式相比较,纯液体和较低浓度的纳米流体的实验数据与关联式吻合较好,相对误差最大不超过13%,高浓度时吻合较差关联式不再适用。  相似文献   

7.
通过络合-沉淀法合成氧化铜纳米颗粒,制备铜颗粒的直径在40~100 nm,晶型为正六面体。利用"两步法"制备水基氧化铜纳米流体。考察了不同质量分数纳米流体的热导率、接触角变化和加热表面颗粒沉积对核沸腾传热性能的影响,并利用可视化记录沸腾过程气泡行为。结果表明:在测试质量分数范围内,传热系数随热通量增加而增大,当质量分数达到0.1%时,强化率最大为146.1%。经过分析可知纳米流体的接触角度、热导率、颗粒沉积以及颗粒扰动对水基氧化铜纳米流体强化传热作用均有影响。通过高速摄像采集质量分数0.07%纳米流体沸腾过程验证结论的可靠性。并对纳米流体核沸腾传热过程建立气泡动力学经验模型,模型计算结果与实测值相对偏差在±10%以内。  相似文献   

8.
随着航空飞机和航天器不断向高性能发展,热控制系统的紧凑性和散热效率亟需提高。泡沫金属具有超大的比表面积和高热导率,在航空航天热控制领域具有良好的应用前景。对亲水性和疏水改性泡沫金属内的池沸腾换热特性进行了试验研究,并与未改性泡沫金属进行对比,得出了亲疏水性对不同孔密度和孔隙率泡沫金属池沸腾换热特性的影响规律。测试样件为泡沫铜,孔密度为5、20和40 PPI,孔隙率为85%和95%。结果表明,疏水改性可使泡沫金属内池沸腾的起始过热度降低20%~30%;疏水改性泡沫金属和亲水改性泡沫金属分别在低热通量(q<4×105 W/m2)和高热通量(q≥4×105 W/m2)条件下具有最佳的沸腾换热性能;表面改性对于低孔隙率泡沫金属内池沸腾强化换热效果更加显著,且亲水改性的强化效果优于疏水改性。  相似文献   

9.
基于GA-BP神经网络的超临界CO2传热特性预测研究   总被引:1,自引:0,他引:1       下载免费PDF全文
超临界二氧化碳(S-CO2)动力循环在能源利用领域中拥有广阔的应用前景,其中超临界CO2的传热特性对其能量转换效率至关重要。开展了超临界CO2在水平小圆管内对流传热实验研究,并通过建立遗传算法优化的BP神经网络模型(GA-BP),对其在不同工况下的传热特性进行预测分析。实验参数范围:系统压力7.5~9.5 MPa,质量流速1100~2100 kg/(m2?s),热通量120~560 kW/m2。实验结果表明,超临界CO2传热系数随流体温度的升高先增大后减小,在拟临界温度附近达到最大值。GA-BP神经网络模型能有效地预测超临界CO2的传热系数,预测数据的决定系数R2为0.99662,超过95%的数据误差位于±10%范围内,平均误差为3.55%,为超临界流体传热预测提供新的思路。  相似文献   

10.
采用阳极氧化法在钛板表面制备出TiO2纳米管阵列,并以其为加热表面。以含不同浓度丁醇的自润湿溶液为实验工质,考察了自润湿溶液浓度变化对系统临界热流密度和传热系数的影响,并从气泡行为的不同分析了两者耦合强化传热的机理。结果表明:相比于光滑表面和蒸馏水的常规组合,TiO2纳米管表面和自润湿溶液耦合传热使得系统的临界热流密度大幅度提高,随自润湿溶液浓度的升高,传热系数依次降低。具有超亲水性和较大粗糙度的纳米管表面与1%(质量分数,下同)自润湿性溶液相耦合时,其最大传热系数和临界热流密度分别为11.963 kW·m-2·℃-1与623.706 kW·m-2,比常规组合传热分别提高了84.1%和143.8%。由气泡可视化可知,耦合传热在沸腾过程中产生的气泡细小,脱离速度快,不易团聚,合并后的气泡易破碎,易形成微气泡,从而使系统进入剧烈的微气泡沸腾状态。气泡的高脱离频率和特殊有效的液体补充路径,是提高系统传热系数和临界热流密度的主要原因。  相似文献   

11.
李宗堂  刘国维 《化工学报》1990,41(5):540-545
本文以水和粘性液体为工质,对环隙宽度为2mm的环隙内流动沸腾传热特性进行了研究.实验结果表明,在一定的热通量范围,环隙内流动沸腾传热系数较空管的平均提高80%,总传热系数平均提高60%.当以水为工质时,总传热系数的实验值与计算值吻合较好.  相似文献   

12.
为探究纳米流体池内沸腾换热特性及其影响因素,利用"两步法"制备了体积分数为0.001%—0.1%的Al_2O_3/H_2O、CuO/H_2O纳米流体以及CuO-Al_2O_3/H_2O混合颗粒纳米流体,并进行池内沸腾换热实验。结果表明:测试的体积分数范围内,纳米流体沸腾换热系数随体积分数的增大而增大,起始沸腾过热度随体积分数的增大而降低,纳米流体的传热强化率随热流密度的增大而减小。实验中,混合纳米流体的传热性能始终优于去离子水和单一颗粒的纳米流体,Al_2O_3、CuO及两者的混合纳米流体沸腾传热系数增强率最高分别达到178.2%,213.2%和253.2%。纳米颗粒的加入对沸腾传热有强化和恶化两方面的作用,在实验的不同阶段,传热效果好坏是热导率、颗粒沉积等共同作用的结果。  相似文献   

13.
以聚醚砜(PES)超滤膜为基膜,通过聚多巴胺(PDA)表面改性后压力沉积不同量的二氧化钛(TiO2)纳米粒子作为基底,再沉积氧化石墨烯(GO)片层制得TiO2/GO复合分离膜,重点考察基膜表面形貌对GO膜分离性能的影响。通过扫描电子显微镜、接触角测试仪、固体表面Zeta电位分析仪、X射线衍射分析仪等对有无TiO2沉积层的GO复合膜进行表征,并考察TiO2沉积量对GO复合膜分离性能的影响。结果表明,TiO2纳米粒子以团簇状态均匀分布在改性的超滤膜表面,随TiO2沉积量的增加,团簇密度增大,GO沉积后表层的峰谷结构更为明显,但表层的层间距并无明显改变。TiO2/GO复合膜的水通量随TiO2沉积量的增加而明显增大,TiO2的沉积对GO沉积量低的复合膜通量的影响更明显,当 GO沉积量为4.11 μg/cm2,TiO2沉积量为20.55 μg/cm2时,复合膜的水通量较无TiO2的复合膜提高了108.38%。复合膜对无机盐溶液的截留性能主要基于膜表面所带负电的道南排斥作用,TiO2/GO复合膜对刚果红的截留率在99%以上,对甲基橙的截留率可达82%,TiO2层的加入并未降低复合膜的截留效果。  相似文献   

14.
异态干涉沸腾,即不同沸腾强度或者不同沸腾模式(核态、膜态)之间相互干涉,被证实可以提升微小间隙内沸腾传热临界热通量。该现象是在填充了低热导率材料的传热块表面发生的。低热导率材料(PTFE)交错分布结构能够增加不同材料交界面的密度且增强不同沸腾强度或者不同沸腾模式的相互干涉,故被应用于提升微小间隙内的沸腾传热特性。实验结果表明:与均匀传热板和PTFE平行分布传热板相比,PTFE交错分布传热板表面的沸腾传热性能显著提升。材料宽度和间隙尺寸对非均匀板表面的沸腾CHF产生明显影响,随着间隙尺寸的增加,CHF呈上升趋势且最大CHF对应的材料宽度减小。在最优的材料宽度和间隙尺寸的组合下,最大的临界热通量可达到1140 kW/m2且最高的CHF提升比例为84%。  相似文献   

15.
水基SiO2纳米流体沸腾换热特性   总被引:1,自引:0,他引:1  
薛淑文  李雨晴  肖卓楠  王亚雄  李科 《化工学报》2017,68(11):4147-4153
纳米流体作为新型换热介质可广泛应用于多个领域。现有研究结果表明导致纳米流体沸腾换热性能变化的因素主要在于纳米颗粒在换热表面的沉积、加热表面粗糙度、表面张力、内部能量传递、气泡形成条件等。对水基SiO2纳米流体进行池沸腾实验研究,得到SiO2/水纳米流体与纯基液-去离子水核态沸腾换热特性的区别,比较不同颗粒粒径对纳米流体换热特性影响。结果表明:对于低浓度纳米流体,添加纳米颗粒后流体的换热特性与纯基液在相同条件下进行核态沸腾时的换热特性有较大差异,不同粒径之间换热特性变化明显,随着粒径的增加呈非线性增长趋势,随着热通量增大纳米颗粒粒径对换热特性的影响趋势增大。  相似文献   

16.
王东民  董丽宁  全晓军 《化工学报》2018,69(10):4200-4205
实验研究了改性SiO2纳米流体液滴蒸发后的沉积图案,以及改性SiO2纳米颗粒沸腾沉积层对沸腾换热的影响。液滴蒸发实验研究表明:改性官能团会影响改性SiO2纳米颗粒是否吸附在液-气界面,从而推断出在沸腾过程中改性官能团对纳米颗粒沉积方式的影响。沸腾实验研究结果表明:用聚乙二醇基团改性的SiO2纳米颗粒沸腾沉积层使加热面的平均粗糙度从160 nm大幅增长到977 nm,且能增强纯水的沸腾传热系数;而用磺酸基团改性的SiO2纳米颗粒沸腾沉积层对加热面的平均粗糙度的改变不明显,只使其增大了60 nm,且恶化了纯水的沸腾传热系数。通过沸腾换热实验结果较好地验证了通过液滴蒸发实验推断出的沸腾过程中改性官能团对纳米颗粒沉积方式的影响。  相似文献   

17.
杨俊兰  宁淑英 《化工学报》2019,70(5):1772-1778
为了测试润滑油对二氧化碳流动沸腾换热特性的影响,对外径6 mm、内径4 mm紧凑通道内的CO2/润滑油混合物的换热进行实验研究。实验工况为质量流量2.74~5.61 kg·h-1,饱和温度-4~8℃,热通量3.2~5 kW·m-2,油浓度0~6%。结果表明:润滑油浓度越大,CO2的局部传热系数越小;含1.5%油浓度相对于无油工况下平均传热系数下降了约42.4%; 传热系数随热通量、饱和温度的升高而增加,干涸后随着质量流量的增加传热系数增加;干涸随油浓度的增加、热通量的减小、饱和温度的升高、质量流量的增加而延迟;干涸特性对传热系数有显著影响,干涸阶段占整个换热过程的35.4%。  相似文献   

18.
张伟  牛志愿  李亚  赵亚东  徐进良 《化工进展》2018,37(10):3759-3764
采用电刷镀和表面改性技术,在紫铜表面制备了纯镍微结构(TS1)、亲水性石墨烯/镍复合微结构(TS2)以及疏水性石墨烯/镍复合微结构(TS3)。采用扫描电镜和接触角测量仪分别对三类微结构的表面形貌和润湿性进行了表征;以去离子水为工质,对三类微结构表面的池沸腾传热特性进行了实验研究,发现含有石墨烯的TS2和TS3较TS1的沸腾传热性能均显著改善,其中,TS3具有最大的传热系数和最高的临界热流密度,与TS1相比,其最大传热系数和临界热流密度分别提高了135%和97%。分析表明,TS3具有复杂三维堆叠微结构,疏水性微结构减小了气泡成核的活化能,增加了核化密度,是传热系数提高的主要因素,同时,三维堆叠微结构增加了受热表面的毛细吸液再润湿能力,是临界热流密度提高的主要机理。  相似文献   

19.
为改善聚偏氟乙烯(PVDF)膜的抗污性能,以聚乙二醇2000接枝的GO/TiO2(PEG/GO/TiO2)纳米复合材料为添加剂,通过非溶剂诱导沉淀相分离法制备了一系列PEG/GO/TiO2/PVDF复合超滤膜。采用FTIR、SEM和接触角测试仪对其结构和形貌进行了表征,采用超滤法评价其纯水通量和抗污性能。结果表明,当PEG/GO/TiO2纳米复合材料质量分数为0.60%时,制备的PEG/GO/TiO2/PVDF复合超滤膜(记为0.60%PEG/GO/TiO2/PVDF)表现出最佳的亲水性和抗污性能,其接触角比PVDF膜下降8.2°,总孔隙率增加13.40%,PEG/GO/TiO2纳米复合材料在PVDF膜中分散较均匀。在0.08 MPa的工作压力下,0.60%PEG/GO/TiO2/PVDF的纯水通量高达282.44 L/(m2·h),对腐植酸溶液的过滤通量为131.96 L/(m2...  相似文献   

20.
目前微电子器件不断地向高密度、微型化、功能化方向发展,散热问题是制约技术进一步发展的瓶颈.本文拟利用纳米多孔表面优良的相变传热特性,解决电子器件微型化散热难的问题.文中以铝基Al2O3纳米多孔薄膜为传热表面,以去离子水为工质,常压下对其大容积池沸腾下的传热性能进行了实验研究.实验结果表明:与光滑表面相比,Al2O3纳米多孔表面在核态沸腾时汽化核心密集,产生汽泡体积小、数量多并能提高铝基传热表面的传热系数2~5倍,且能够在长时间内维持其较高的传热系数;以纳米多孔表面作为传热表面,可以有效降低微电子原件表面温度3~5℃,在核态沸腾阶段能够降低30℃以上,很好地起到了降低电子元件表面温度的作用.实验结果对微电子冷却有重要的参考作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号