首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
F-12纤维表面处理对复合材料壳体纤维强度转化率的影响   总被引:4,自引:0,他引:4  
对F-12纤维表面进行聚合物涂层改性,通过NOL环复合材料剪切强度测试,研究不同浓度的聚合物表面处理液对复合材料层间剪切强度的影响.结果表明:F-12纤维表面经TDE-85/DDM体系处理后,复合材料层间剪切强度均高于未表面处理的纤维;当刚性涂层液质量分数为5%时,层间剪切强度最高,比未表面处理的纤维高50%左右.φ150mm容器爆破试验结果表明,F-12纤维表面经涂层液处理后,复合材料壳体纤维强度转化率平均提高2.3%,容器特性系数平均提高12.5%.  相似文献   

2.
环氧树脂/PBO纤维复合材料性能研究   总被引:1,自引:0,他引:1  
对环氧树脂(EP)/聚对苯撑苯并二恶唑(PBO)纤维复合材料的性能进行初步研究。结果表明,用浓度70%的甲基磺酸(MSA)溶液对PBO纤维表面进行处理,可改善PBO纤维与EP基体的粘结强度,但同时使PBO纤维的拉伸性能降低;对PBO纤维处理2h后,以胺类固化剂固化的EP/PBO纤维复合材料的层间剪切强度比处理前提高41%,以酸酐固化剂固化的EP/PBO纤维复合材料的层间剪切强度比处理前提高48%;前者的层间剪切强度大于后者。  相似文献   

3.
研究了炭纤维表面不同处理方法对复合材料力学性能的影响,采用等离子体和等离子体接枝技术对炭纤维表面进行处理后,CF/PMR-15复合材料的界面剪切强度与层间剪切强度均有所提高,随着界面状态的改善,界面剪切强度提高的幅度比层间剪切强度提高的大,本文为指导炭纤维的表面处理,评价处理效果,进一步预报复合材料的宏观性能打下了基础。  相似文献   

4.
低温等离子体对PBO纤维表面的改性   总被引:1,自引:0,他引:1  
采用硅烷偶联剂处理聚对苯撑苯并双噁唑(PBO)纤维,利用常压射频低温等离子体对PBO纤维进行了表面处理,通过扫描电镜、红外光谱、光学显微镜等研究了处理时间对PBO纤维表面官能团和表面形貌的影响规律,通过单丝拔出实验测定PBO纤维基复合材料的界面剪切强度。结果表明:经过常压射频低温等离子体处理后,PBO纤维的表面形成了大量的极性基团,表面产生明显的凹坑,PBO纤维与树脂的粘接性能提高50%,纤维的拉伸强度下降5%。  相似文献   

5.
采用空气介质阻挡放电等离子体对国产芳纶ⅢA进行表面处理,优化了其处理工艺。用SEM、XPS等方法研究了处理前后纤维表面形态和化学状态的变化,通过短梁剪切试验评价了芳纶ⅢA/环氧复合材料的抗层间剪切强度。结果表明:经空气等离子体处理后芳纶ⅢA表面粗糙度增加,极性增强,纤维力学性能无明显变化,芳纶ⅢA/环氧复合材料的抗层间剪切强度提高了18%。  相似文献   

6.
采用等离子体接枝对芳纶纤维表面进行改性处理,采用XPS、浸润性、界面剪切强度对等离子体接枝处理前后的表面组成、复合材料界面粘接性能等进行了研究,结果表明:等离子体接枝处理可以有效地提高芳纶纤维表面的极性官能团,增加与基体树脂-环氧树脂的浸润性,进而提高芳纶/环氧复合材料的界面粘接强度.  相似文献   

7.
纤维表面处理对F—12复合材料剪性能的影响   总被引:1,自引:0,他引:1  
本文采用活性涂层、刚性涂层、柔性涂层分别对F-12纤维进行表面处理,并研究了不同涂层对F-12/AE4环氧NOL环复合材料剪切强度的影响。试验结果表明,各种涂层对其复合材料的剪切性能都有一定的影响。其中,刚性涂层有利于提高NOL环的剪切强度。  相似文献   

8.
水解/接枝处理对F一12纤维/环氧复合材料力学性能的影响   总被引:2,自引:0,他引:2  
采用氢氧化钾稀溶液对F-12纤维进行表面处理,将-COOK离子对引入到F-12纤维表面,引而引发不同接枝单体的接枝,并分析了不同接枝单体和接枝时间等对F-12纤维拉伸强度及其环氧复合材料层间剪切强度的影响。研究表明,在温和条件下将-COOK离子对引入F-12纤维表面,引发环氧氯丙烷接枝,可以提高F-12纤维/环氧复合材料的层间剪切强度。  相似文献   

9.
为提高碳纤维/环氧树脂复合材料的界面结合性能,采用超临界CO2对碳纤维表面进行处理.结果表明:在处理后碳纤维的单丝拉伸强度下降2.81%,碳纤维/环氧树脂界面剪切强度和层间剪切强度在处理后分别提高25.19%和17.11%.通过对碳纤维原子力显微镜(AFM)观察,经过处理的碳纤维表面粗糙度增加明显,同时对复合材料层间剪切断口端面用扫描电子显微镜(SEM)观察,经过超临界CO2处理后的碳纤维与环氧树脂的复合性能得到改善.  相似文献   

10.
氧气低温等离子体对PBO纤维的表面改性   总被引:1,自引:0,他引:1  
采用氧气低温等离子体对聚对苯撑苯并双噁唑(PBO)纤维进行表面改性,讨论了处理时间、处理功率及气压对PBO纤维单丝强度、与环氧树脂基体的界面剪切强度(π_(IFSS))、形态结构、表面元素组成和亲水性的影响。结果表明:在处理时间为2.5 min,处理功率为30 W,处理气压为50 Pa的最佳工艺条件下,经氧气等离子处理后的PBO纤维与环氧树脂的π_(IFSS)比原丝提高60%,达9.38 MPa,与水的接触角也从105°下降到72°。  相似文献   

11.
PBO纤维表面处理对EP/PBO复合材料性能的影响   总被引:2,自引:0,他引:2  
通过自制的专用处理剂处理聚对苯撑苯并双恶唑(PBO)纤维表面,制备了环氧树脂(EP)/PBO纤维复合材料。通过傅立叶变换红外光谱仪和X射线光电子能谱仪对PBO纤维表面状态进行分析,采用扫描电子显微镜对经过剪切性能测试的NOL环试样破坏面形貌进行分析。结果表明,经过专用处理剂C处理后的PBO纤维表面浸润性得到提高,C、O、N三种元素的含量有较大变化,NOL环试样的剪切强度由文献中报道的15~18 MPa提高到27.83MPa,提高了约59%。  相似文献   

12.
PBO纤维因其具有高强度、高模量、高耐热性以及高化学稳定性等性能而被公认为目前综合性能最好的有机纤维。对自制的初生PBO纤维分别在500℃、550℃、600℃、650℃和700℃进行高温热处理,并对处理后纤维的力学性能、耐热性能、表面形貌以及界面性能进行测试。结果表明,500℃下热处理后PBO纤维拉伸强度最大为4.72GPa,随着热处理温度升高,纤维的力学性能下降;600℃下热处理后PBO纤维的初始分解温度最高为641.3℃;随着热处理温度的提高,PBO纤维的表面粗糙度在增加,同时其界面剪切强度(IFSS)也随着温度的升高而增大。  相似文献   

13.
采用自制的专用处理剂处理聚对苯撑苯并双恶唑(PBO)纤维,研究了PBO纤维增强环氧树脂(EP)(EP/PBO)复合材料的配方体系与制备工艺参数.研究表明,采用EP与4,4-二胺基二苯甲烷(DDS)混合制备的复合材料的剪切强度最高.控制预浸胶带的含胶量为35%~37%,在适宜的缠绕工艺参数与固化条件下,制备的EP/PBO复合材料的NOL环剪切强度达26.28~29.32 MPa.  相似文献   

14.
针对研究较少的聚对苯撑苯并双恶唑(PBO)纤维热处理工艺进行研究,通过控制热处理气氛、热处理温度、热处理停留时间和预加应力4个参数,对初纺丝PBO(PBO–AS)纤维的热处理工艺进行优化,得到拉伸性能大幅提高的PBO–HM纤维。利用电子织物强力仪对PBO–HM纤维的拉伸性能进行测试,发现热处理氛围为N2时PBO–HM纤维的性能更为优异;热处理温度控制在550℃以下时,热处理温度越高,热处理后得到的PBO–HM纤维的拉伸弹性模量越高,但热处理停留时间延长会使拉伸强度降低;预加应力有助于PBO–HM纤维拉伸弹性模量的增加。经分析得出,最优热处理温度为550℃,热处理停留时间为53.3 s,预加应力为5.48 c N/dtex,得到的PBO–HM的拉伸性能较优。  相似文献   

15.
王虎  刘吉平 《中国塑料》2013,27(4):7-12
综述了近年来聚对苯撑苯并噁唑(PBO)纤维抗紫外光老化改性的最新研究进展,探讨了紫外光降解老化过程和对光老化机理的推测,指出完善PBO纤维的内部结构和添加抗紫外光老化剂均可改善PBO纤维的紫外光稳定性。介绍了几种抗紫外光老化改性的方法,并讨论了它们各自的优缺点。目前抗紫外光老化研究主要集中在如何提高PBO纤维基体和抗紫外光老化剂之间的相容性。  相似文献   

16.
对国内外聚对苯撑苯并双恶唑(PBO)纤维热处理工艺技术、PBO纤维热处理工艺机理研究进展、高模量PBO纤维的性能及应用进行了综述,对比了国内外成果及研究差距。阐明了国内PBO纤维关于热处理工艺研究尚处于试验阶段,虽能够小批量制备PBO高模量纤维,但与Toyobo公司产Zylon-HM纤维相比,在强度保持率、模量增长率、性能稳定性、产量及类型等方面还有差距。PBO纤维具有高强度、高模量、耐高热等性能,在航空航天、国防军工等领域的增强材料、耐高温、耐烧蚀材料之中,具有良好的应用前景和较高的市场价值。  相似文献   

17.
This paper traces the historical development of high temperature resistant rigid‐rod polymers. Synthesis, fiber processing, structure, properties, and applications of poly(p‐phenylene benzobisoxazole) (PBO) fibers have been discussed. After nearly 20 years of development in the United States and Japan, PBO fiber was commercialized with the trade name Zylon® in 1998. Properties of this fiber have been compared with the properties of poly(ethylene terephthalate) (PET), thermotropic polyester (Vectran®), extended chain polyethylene (Spectra®), p‐aramid (Kevlar®), m‐aramid (Nomex®), aramid copolymer (Technora®), polyimide (PBI), steel, and the experimental high compressive strength rigid‐rod polymeric fiber (PIPD, M5). PBO is currently the highest tensile modulus, highest tensile strength, and most thermally stable commercial polymeric fiber. However, PBO has low axial compressive strength and poor resistance to ultraviolet and visible radiation. The fiber also looses tensile strength in hot and humid environment. In the coming decades, further improvements in tensile strength (10–20 GPa range), compressive strength, and radiation resistance are expected in polymeric fibers. Incorporation of carbon nanotubes is expected to result in the development of next generation high performance polymeric fibers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 100: 791–802, 2006  相似文献   

18.
A series of dihydroxy poly(p-phenylene benzobisoxazole) (DHPBO) were prepared by introducing binary hydroxyl polar groups into poly(p-phenylene benzoxazole) PBO macromolecular chains and the effects of hydroxyl polar groups on surface wettability, interfacial adhesion and axial compression property of PBO fiber were investigated. Contact angle measurement showed that the wetting process both for water and for ethanol on DHPBO fibers were obviously shorter than that on PBO fibers, implying DHPBO fibers have a higher surface free energy. Meanwhile, single fiber pull-out test showed that DHPBO fibers had higher interfacial shear strength than that of PBO fibers. Scanning electron microscope proved that there was more resin remained on the surface of DHPBO fibers than on PBO fibers after pull-out test. Furthermore, axial compression bending test showed that the introduction of binary hydroxyl groups into macromolecular chains apparently improved the equivalent bending modulus of DHPBO fibers.  相似文献   

19.
The methods of argon plasma and argon plasma combined with coupling agents were employed to modify the poly[1,4‐phenylene‐cis‐benzobisoxazole] (PBO) fiber surface. The interfacial shearing strength (IFSS) of PBO fibers/epoxy resin was measured by the single fiber pull‐out test. The surface chemical structure and surface composition of PBO fibers were determined by FTIR and X‐ray photoelectron spectroscopy respectively. The morphology of the fiber surface was investigated by scanning electron microscopy and the specific surface area of the fibers was calculated by B.E.T. equation. Furthermore, the wettability of PBO fibers was confirmed by the droplet profile analysis method. The results showed that the elemental composition ratio of the fiber surface changed after the modification. The IFSS increased by 42 and 78% when the fibers were treated by argon plasma and argon plasma combined with the coupling agents, respectively. Meanwhile, the specific surface areas of the treated fibers were improved. In addition, compared with the modification of argon plasma, the modification of argon plasma combined with the coupling agents inhibited the attenuation phenomena of the IFSS and the wettability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1428–1435, 2006  相似文献   

20.
PBO纤维表面改性方法的研究   总被引:1,自引:0,他引:1  
对PBO纤维表面性能的改善进行了研究,考察了混杂芳纶纤维、电晕处理、偶联剂处理及强酸处理等多种方法对PBO纤维与环氧树脂表面粘接强度及其复合材料层间剪切性能的影响程度,比较了各种方法的改性效果及各自优缺点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号