首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 871 毫秒
1.
以新疆粉煤灰为原料,以球磨为机械活化方式,以氢氧化钠和硅酸钠混合液为激发剂,在添加少量水泥熟料的基础上,制备出高强度的粉煤灰基碱激发地质聚合物材料。研究了球磨时间、碱激发剂用量和水玻璃模数对粉煤灰基地质聚合物试块力学性能的影响。结果表明,新疆粉煤灰由于碱金属M_2O含量高的地域特性(5.1%),在球磨时间为60 min,外加碱激发剂用量为5%,水玻璃模数为1.5,添加8%的P.O 42.5R普通硅酸盐水泥后,粉煤灰活性得以有效提高。在常温标准养护条件下,制得的地质聚合物材料28 d和180 d的抗压强度分别达42.6 MPa和49.3 MPa,抗折强度分别达7.6 MPa和9.3 MPa,力学性能可满足工程要求,提高了该粉煤灰的使用率。  相似文献   

2.
以新疆粉煤灰为原料,以球磨为机械活化方式,以氢氧化钠和硅酸钠混合液为激发剂,在添加少量水泥熟料的基础上,制备出高强度的粉煤灰基碱激发地质聚合物材料。研究了球磨时间、碱激发剂用量和水玻璃模数对粉煤灰基地质聚合物试块力学性能的影响。结果表明,新疆粉煤灰由于碱金属M_2O含量高的地域特性(5.1%),在球磨时间为60 min,外加碱激发剂用量为5%,水玻璃模数为1.5,添加8%的P.O 42.5R普通硅酸盐水泥后,粉煤灰活性得以有效提高。在常温标准养护条件下,制得的地质聚合物材料28 d和180 d的抗压强度分别达42.6 MPa和49.3 MPa,抗折强度分别达7.6 MPa和9.3 MPa,力学性能可满足工程要求,提高了该粉煤灰的使用率。  相似文献   

3.
以粉煤灰和铸造粉尘为主要原料,以KOH、NaOH、Na2SiO3、K2SiO3和水玻璃为碱激发剂,制备地质聚合物.研究了不同激发剂对铸造粉尘-粉煤灰基地质聚合物抗压强度的影响.结果表明:不同浓度的NaOH和KOH溶液的激发效果较差,制备的铸造粉尘-粉煤灰基地质聚合物的抗压强度较低.NaOH和KOH溶液与K2SiO3溶液混配复合激发剂可提高铸造粉尘-粉煤灰基地质聚合物的抗压强度.水玻璃溶液激发效果最好,随着水玻璃溶液模数的增加,铸造粉尘-粉煤灰基地质聚合物的抗压强度逐渐提高;当水玻璃模数为1.2时,铸造粉尘基地质聚合物28 d抗压强度达到最大,为21.4 MPa;继续增大水玻璃模数,铸造粉尘-粉煤灰基地质聚合物28 d抗压强度趋于下降.  相似文献   

4.
为得到室温下粉煤灰与碱激发剂质量比、水玻璃与氢氧化钠溶液质量比和氢氧化钠溶液摩尔浓度对粉煤灰地质聚合物力学性能的影响,以低钙粉煤灰为原料,制备了地质聚合物胶凝材料。采用正交试验方法,分析粉煤灰地质聚合物抗压强度,探讨碱激发剂配比对粉煤灰地质聚合物力学性能的影响,结合SEM、XRD和FTIR对试样进行表征,并对该材料的应力-应变曲线进行了研究。结果表明:粉煤灰地质聚合物的抗压强度随着激发剂掺量的减少而增大,水玻璃在激发剂中的比值与粉煤灰地质聚合物的抗压强度呈现正相关,其中粉煤灰与碱激发剂质量比为1.8,水玻璃与氢氧化钠溶液质量比为2.5且氢氧化钠溶液的浓度为10 mol/L时,120 d龄期的抗压强度可达51.98 MPa。对应力-应变曲线分析得出,在一定程度上,激发剂的掺入量对粉煤灰地质聚合物的破坏应变和弹性模量有较大影响。SEM、XRD和FTIR分析表明随着养护时间增长,胶凝材料体系内结构更致密,生成了更多的硅铝酸盐凝胶。  相似文献   

5.
本文研究了复合碱掺量(水玻璃与氢氧化钠),水玻璃模数及固化温度对制备粉煤灰地质聚合物早期抗压强度的影响。结果表明:当复合碱掺量为50g(复合碱:原料=0.35),水玻璃模数为0.8,固化温度为80℃时,制备得到的粉煤灰地质聚合物早期抗压强度最佳,1天龄期样品抗压强度即可达到近40MPa,自然条件下养护,早期强度增长较快,5d时,粉煤灰地质聚合物的抗压强度可达到71.3MPa,5d后强度增长缓慢;对地质聚合物材料进行IR、XRD、SEM等分析表明,地质聚合物与原料粉煤灰在微观结构上并没有大的变化,地聚合物抗压强度的增长是由于样品内部发生聚合反应。  相似文献   

6.
为提高粉煤灰基地聚合物抗压强度,以纤维作为增韧材料,重点考察了纤维种类和掺量对地聚合物强度的影响.木质素纤维、聚酯纤维和玻璃纤维的最佳掺比分别为0.3%、0.1%和0.3%.过量木质素纤维导致地聚合物局部强度降低,过量玻璃纤维使得地聚合物孔隙增加,导致强度降低.掺加玻璃纤维的粉煤灰基地聚合物抗压强度高(33.25 MPa),其微观结构分析表明Si-O-Si和Si-O-Al聚合度较高.  相似文献   

7.
粉煤灰地质聚合物材料工艺条件和性能研究   总被引:1,自引:0,他引:1  
以粉煤灰为硅铝成分的主要来源,制备了地质聚合物材料,重点探讨了激发荆的陈化时间、固液混料时的搅拌时间、养护温度、养护时间、养护方式等工艺参数对材料力学性能的影响.结果表明,通过工艺条件优化,地质聚合物材料抗压强度将有大幅度增加.实验获得了理想的工艺条件为:激发剂陈化24~48h,固液混合搅拌时间10~15min,在60~80℃范围内湿法养护时间24h后,自然放置.实验制备的粉煤灰地质聚合物材料1d抗压强度可以达到27.2MPa.28d可以达到42.5MPa.  相似文献   

8.
矿渣-粉煤灰地质聚合物制备及力学性能研究   总被引:2,自引:1,他引:1  
尚建丽  刘琳 《硅酸盐通报》2011,30(3):741-744
以矿渣、粉煤灰为原料,以硅酸钠和氢氧化钠为激发剂,制备了矿渣-粉煤灰基地质聚合物,测试了不同配合比下矿渣-粉煤灰基地质聚合物的7 d、14 d和28d的抗压强度.结果表明:当水胶比为0.3,氢氧化钠和硅酸钠的质量比为0.63,矿渣与粉煤灰的质量比为2,标准养护条件下,矿渣-粉煤灰基地质聚合物的7 d、14 d和28 d龄期的抗压强度分别达到57.0 MPa、69.0 MPa和84.3 MPa.  相似文献   

9.
水泥–粉煤灰泡沫混凝土抗压强度与气孔结构的关系   总被引:6,自引:0,他引:6  
研究了粉煤灰和泡沫掺量对水泥–粉煤灰泡沫混凝土的干体积密度和抗压强度的影响,用读数显微镜和图像分析软件分析了泡沫混凝土的气孔结构,重点研究了泡沫混凝土的抗压强度与气孔结构关系。结果表明用粉煤灰取代水泥会降低泡沫混凝土的抗压强度,但其影响程度随混凝土气孔率的增大而减小:当粉煤灰取代率从20%(质量分数,下同)增加到50%时,不添加泡沫的混凝土的抗压强度从58.9MPa降低到了40.2MPa;气孔体积分数为0.27~0.30的1kg干胶凝材料(水泥加粉煤灰)添加600mL泡沫时,混凝土的抗压强度从32.7MPa降低到了23.6MPa,而气孔体积分数为0.62~0.66左右的1kg干胶凝材料添加2L泡沫时,混凝土的抗压强度仅从3.06MPa降低到2.47MPa,强度降低率分别为32.0%,28.0%和19.3%;泡沫混凝土的抗压强度与其基体的硬化水泥浆体强度、Feret孔径大于10μm的气孔的体积分数和形状因子具有良好的相关性。建立了泡沫混凝土的抗压强度与气孔结构参数的数学关系式。  相似文献   

10.
以电解锰渣和粉煤灰的混合物为原料,在水、氢氧化钠和水玻璃混合组成的碱性体系中制备地质聚合物.研究了电解锰渣的碱热预处理方式对试块材料抗压强度的影响,包括碱的种类及添加量、热处理的温度和时间.结果 显示,碱热处理过程中电解锰渣∶氢氧化钠=1∶0.3的质量比混合均匀后,于600℃马弗炉中热处理1.5h后的固体粉料,制备得到的地质聚合物材料的抗压强度效果最佳,达到38 MPa.X-射线衍射(XRD)结果表明,形成的地质聚合物中物质的物相组成发生变化,并且形成了水化硅酸钙.FT-IR结果显示,反应过程中形成了无定型的硅酸盐衍生物.场发射电镜(SEM)结果显示,制备的地质聚合物材料内部结构致密,物质之间相互胶结.  相似文献   

11.
以工业固体废弃物富镁镍渣和粉煤灰为原料,以水玻璃和NaOH为碱激发剂,制备了一系列富镁镍渣-粉煤灰基地质聚合物。研究了不同粉煤灰掺量对地质聚合物力学性能的影响,并测定地质聚合物的线性收缩和碱溶出,通过XRD、IR、DTA等手段对产物进行表征。结果表明:富镁镍渣-粉煤灰基地质聚合物的强度随粉煤灰的掺入先升高后降低,当掺量为30%(质量分数)时,地质聚合物的抗压强度可达最高值22.15 MPa,较镍渣基地质聚合物强度提高42.2%;XRD分析表明富镁镍渣中MgO以镁橄榄石相存在,而非游离态,故地质聚合物具有良好的体积安定性。  相似文献   

12.
This paper presents the compressive strength of fly‐ash‐based geopolymer concretes at elevated temperatures of 200, 400, 600 and 800 °C. The source material used in the geopolymer concrete in this study is low‐calcium fly ash according to ASTM C618 class F classification and is activated by sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) solutions. The effects of molarities of NaOH, coarse aggregate sizes, duration of steam curing and extra added water on the compressive strength of geopolymer concrete at elevated temperatures are also presented. The results show that the fly‐ash‐based geopolymer concretes exhibited steady loss of its original compressive strength at all elevated temperatures up to 400 °C regardless of molarities and coarse aggregate sizes. At 600 °C, all geopolymer concretes exhibited increase of compressive strength relative to 400 °C. However, it is lower than that measured at ambient temperature. Similar behaviour is also observed at 800 °C, where the compressive strength of all geopolymer concretes are lower than that at ambient temperature, with only exception of geopolymer concrete containing 10 m NaOH. The compressive strength in the latter increased at 600 and 800 °C. The geopolymer concretes containing higher molarity of NaOH solution (e.g. 13 and 16 m ) exhibit greater loss of compressive strength at 800 °C than that of 10 m NaOH. The geopolymer concrete containing smaller size coarse aggregate retains most of the original compressive strength of geopolymer concrete at elevated temperatures. The addition of extra water adversely affects the compressive strength of geopolymer concretes at all elevated temperatures. However, the extended steam curing improves the compressive strength at elevated temperatures. The Eurocode EN1994:2005 to predict the compressive strength of fly‐ash‐based geopolymer concretes at elevated temperatures agrees well with the measured values up to 400 °C. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
《Ceramics International》2016,42(8):9613-9620
Two types of fly ash sourced from Sarawak, Malaysia and Gladstone, Australia reflect differences in chemical compositions, mineral phase and particle size distributions. In this paper, the Sarawak fly ash was used to produce geopolymer in comparison to the well-developed Gladstone fly ash-based geopolymer. Characteristics of fly ash and mixtures proportions affecting compressive strength of the geopolymers were investigated. It is found that the variations of both fly ash types on particle size distributions, chemical compositions, morphology properties and amorphous phase correspond to the compressive strength. The results obtained show that after 7 days, geopolymer using Sarawak fly ash has lower compressive strength of about 55 MPa than geopolymer using Gladstone fly ash with strength of about 62 MPa. In comparison with Gladstone fly ash-based geopolymer, it showed that Sarawak fly ash-based geopolymer can be a potential construction material. Moreover, the production of Sarawak fly ash-based geopolymer aids to widen the application of Sarawak fly ash from being treated as industrial waste consequently discharging into the ash pond.  相似文献   

14.
The research was carried out to develop geopolymers mortars and concrete from fly ash and bottom ash and compare the characteristics deriving from either of these products. The mortars were produced by mixing the ashes with sodium silicate and sodium hydroxide as activator solution. After curing and drying, the bulk density, apparent density and porosity, of geopolymer samples were evaluated. The microstructure, phase composition and thermal behavior of geopolymer samples were characterized by scanning electron microscopy, XRD and TGA-DTA analysis respectively. FTIR analysis revealed higher degree of reaction in bottom ash based geopolymer. Mechanical characterization shows, geopolymer processed from fly ash having a compressive strength 61.4 MPa and Young's modulus of 2.9 GPa, whereas bottom ash geopolymer shows a compressive strength up to 55.2 MPa and Young's modulus of 2.8 GPa. The mechanical characterization depicts that bottom ash geopolymers are almost equally viable as fly ash geopolymer. Thermal conductivity analysis reveals that fly ash geopolymer shows lower thermal conductivity of 0.58 W/mK compared to bottom ash geopolymer 0.85 W/mK.  相似文献   

15.
粉煤灰地聚物的力学性能及微观结构研究   总被引:3,自引:0,他引:3  
赵素宁  曲烈  杨久俊  张泉 《粉煤灰》2010,22(5):3-6,13
研究了在常温、常压养护条件下制备粉煤灰地聚物的工艺,物理力学性能及其水化产物微观结构。结果表明:粉煤灰地聚物在水玻璃模数为1.5,碱固比为0.3,水灰比为0.3时,28d抗压强度为35.9MPa。由FTIR、DTA/TG和超景深显微镜等表征手段推断出:在水化过程中粉煤灰内玻璃体发生了解聚—缩聚反应,即玻璃体被碱溶液溶解解聚后在其边缘发生缩聚反应,生成非结晶相N-A-S-H凝胶,且N-A-S-H凝胶随着时间延长而增加。  相似文献   

16.
NaOH-activated ground fly ash geopolymer cured at ambient temperature   总被引:3,自引:0,他引:3  
NaOH-activated ground fly ash geopolymers, cured at room temperature, were studied in this paper. Ground fly ash (GFA), with a median particle size of 10.5 μm, was used as source material. NaOH concentrations of 4.5-16.5 M (M) were used as an alkali activator. Compressive strength tests and microstructure observations using SEM, EDX, XRD and FTIR were performed. Results indicated that GFA gave higher strength geopolymer paste compared to original fly ash. Ground fly ash could be used as a source material for making geopolymers cured at room temperature. An increase in NaOH concentration from 4.5 to 14.0 M increased the strength of GFA geopolymer pastes. Microstructure studies indicated that NaOH concentrations of 12.0-14.0 M created new crystalline products of sodium aluminosilicate. The compressive strengths at 28 days of 20.0-23.0 MPa were obtained with the NaOH concentrations of 9.5-14.0 M. Increasing the NaOH concentration beyond this point resulted in a decrease in the strength of the paste due to early precipitation of aluminosilicate products.  相似文献   

17.
《Ceramics International》2022,48(10):14076-14090
Environmental issues caused by glass fiber reinforced polymer (GFRP) waste have attracted much attention. The development of cost-effective recycling and reuse methods for GFRP composite wastes is therefore essential. In this study, the formulation of the GFRP waste powder replacement was set at 20–40 wt%. The geopolymer was formed by mixing GFRP powder, fly ash (FA), steel slag (SS) and ordinary Portland cement (OPC) with a sodium-based alkali activator. The effects of GFRP powder content, activator concentration, liquid to solid (L/S) ratio, and activator solution modulus on the physico-mechanical properties of geopolymer mixtures were identified. Based on the 28-day compressive strength, the optimal combination of the geopolymer mixture was determined to be 30 wt% GFRP powder content, an activator concentration of 85%, L/S of 0.65, and an activator solution modulus of 1.3. The ratios of compressive strength to flexural strength of the GFRP powder/FA-based geopolymers were considerably lower than those of the FA/steel slag-based geopolymers, which indicates that the incorporation of GFRP powder improved the geopolymer brittleness. The incorporation of 30% GFRP powder in geopolymer concrete to replace FA can enhance the compressive and flexural strengths of geopolymer concrete by 28%. After exposure to 600 °C, the flexural strength loss for geopolymer concretes containing 30 wt% GFRP powder was less than that of specimens without GFRP powder. After exposure to 900 °C, the compressive strength and flexural strength losses of geopolymer concretes containing 30 wt% GFRP powder were similar to those of specimens without GFRP powder. The developed GFRP powder/FA-based geopolymers exhibited comparable or superior physico-mechanical properties to those of the FA-based geopolymers, and thus offer a high application potential as building construction material.  相似文献   

18.
采用钢渣微粉和粉煤灰为主要原材料制备地质聚合物,以抗压强度为指标优化制备条件,探讨影响地质聚合物强度的因素,利用SEM、XRD和TG-DSC等手段对产物的微观形貌、物相组成和热稳定性进行分析表征。研究表明,地质聚合物的抗压强度随着钢渣微粉掺量和激发剂掺量增加先增加后减小,随温度增加而增加,其中养护温度影响最显著,水玻璃模数影响最小。最佳工艺条件为:水玻璃模数1.0、激发剂掺量20%(质量分数)、钢渣微粉掺量20%(质量分数)、液固比0.3、养护温度60 ℃。其3 d和7 d抗压强度高达40.11 MPa和43.03 MPa,固化Pb2+后对其强度影响较小,固化率在99.99%以上。地质聚合物表面致密度高,无明显裂纹,未观察到明显的钢渣颗粒轮廓,晶相结构主要为石英和莫来石,热稳定好。  相似文献   

19.
赤泥/粉煤灰免烧矿物聚合物材料的制备和强度   总被引:3,自引:1,他引:2       下载免费PDF全文
以赤泥、粉煤灰为主要原料,采用水玻璃作为碱激发剂,制备出一种具有较高早期强度的免烧成矿物聚合物胶凝材料.通过实验初步探讨了碱激发剂对该矿物聚合物强度发展的影响.利用合适配比的赤泥/粉煤灰胶凝材料作为基质原料,用细沙作骨料,制成了一种赤泥/粉煤灰基矿物聚合物免烧材料.当赤泥的加入量在60%~70%范围时,各组试样的3 d抗压强度均在10 MPa以上,符合非承重墙体建筑材料的强度MU10级要求.同时本文还对该矿物聚合物材料中胶凝反应机理进行了初步探讨.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号