首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
乔宁 《粘接》2023,(2):61-64+82
为了提升室内设计中碳纤维复合材料的拉伸性能,提出一种锻造成型的新工艺。研究了模压压力、加压温度、固化温度、保温时间等参数对碳纤维复合材料拉伸性能的影响。结果表明,随着模压压力、加压温度、固化温度、保温时间增加,碳纤维复合材料的拉伸强度和标准化拉伸强度先增大后减小;适宜的碳纤维复合材料的成型工艺参数为:模压压力为10 MPa、加压温度110℃、固化温度140℃、保温时间30 min;碳纤维复合材料拉伸过程中主要有3种破坏形式:纤维拔出、树脂断裂和内聚破坏,最佳工艺参数下碳纤维复合材料的断裂方式为内聚破坏。  相似文献   

2.
王述超  李琦 《粘接》2023,(3):60-64
采用快速模压成型法制备了建筑隔震碳纤维复合材料,研究了模压压力、加压温度和固化温度对碳纤维复合材料拉伸性能和摩擦性能的影响。结果表明,当模压压力从6 MPa上升至14 MPa时,碳纤维复合材料的拉伸强度和标准化拉伸强度都呈现先增加后减小,摩擦系数表现为先减小后增大;当加压温度从100℃上升至130℃时,碳纤维复合材料的拉伸强度和标准化拉伸强度都先增大后逐渐减小,摩擦系数表现为先减小后增大;当固化温度从130℃上升至160℃时,碳纤维复合材料的拉伸强度和标准化拉伸强度都先增大后逐渐减小,摩擦系数表现为先减小后增大的趋势。适宜的建筑隔震碳纤维复合材料制备工艺为:模压压力10 MPa、加压温度110℃、固化温度140℃。  相似文献   

3.
任泽 《粘接》2022,(6):55-58
采用薄膜层叠模压成型工艺制备铁路建设轨枕用高性能碳纤维织物/聚碳酸酯复合材料,研究模压温度、模压压力和模压时间对复合材料宏观形貌、拉伸性能和冲击性能的影响。结果表明,从碳纤维/聚碳酸脂复合材料的宏观形貌上看,模压温度、模压压力和模压时间分别应该控制在245℃及以下、6 MPa及以下和10 min及以下;从碳纤维/聚碳酸酯复合材料的力学性能上看,轨枕用高性能复合材料的最佳制备工艺:模压温度245℃、模压压力6 MPa、模压时间10 min,复合材料的0°、45°拉伸强度分别为377、99 MPa,冲击功为1.36 J。  相似文献   

4.
研究了模压温度、模压压力和模压时间对健身器械用碳纤维/聚碳酸酯复合材料宏观形貌、0°和45°方向拉伸性能和冲击性能的影响。结果表明,随着模压温度的升高,碳纤维/聚碳酸酯复合材料的拉伸强度和冲击功呈现先增加而后减小的特征,在模压温度为240℃时取得最大值;随着模压压力的升高,碳纤维/聚碳酸酯复合材料在0°和45°方向的拉伸强度都呈现先增加而后减小的特征,当模压压力为6MPa,碳纤维/聚碳酸酯复合材料具有最佳拉伸强度和冲击韧性结合。随着模压时间的延长,碳纤维/聚碳酸酯复合材料在0°和45°方向的拉伸强度都呈现先增加而后减小的特征,在模压时间为10min时取得最大值。碳纤维/聚碳酸酯复合材料的适宜的模压成型工艺参数为:模压温度240℃、模压压力6MPa、模压时间10min。  相似文献   

5.
采用常规性能分析、傅里叶变换红外光谱分析、差示扫描量热分析、热重分析、凝胶渗透色谱分析等对模压高碳酚醛树脂进行表征,通过模压成型分别制备了碳纤维和高硅氧纤维增强模压高碳酚醛树脂复合材料,测试了不同成型压力下两种复合材料的力学性能和耐烧蚀性能,最后通过超声无损检测方法对复合材料密实度进行表征。结果表明,模压高碳酚醛树脂苯环上以邻位取代为主,其游离酚和游离醛含量较低,180℃的凝胶时间低于50 s,适用于较高温度下的快速模压成型工艺;该树脂分子量小,对纤维的浸润性好,适宜的固化温度为(190±5)℃,900℃的残炭率可达67.13%。随成型压力增加,碳纤维和高硅氧纤维增强复合材料的拉伸和弯曲性能均逐渐提高,但当成型压力大于45 MPa后,增加趋势变缓;当成型压力为45 MPa时,两种复合材料具有最好的耐烧蚀性能,其中碳纤维增强复合材料的线烧蚀率和质量烧蚀率分别为0.006 8 mm/s和0.055 9 g/s,高硅氧纤维增强复合材料的线烧蚀率和质量烧蚀率分别为0.116 4 mm/s和0.070 8 g/s。通过超声无损检测方法可以初步判断碳纤维增强复合材料的密实度。  相似文献   

6.
采用浓硝酸对短切碳纤维(CF)进行表面氧化处理,利用模压法制备了热塑性酚醛树脂(PF)/CF复合材料,讨论了成型温度和保压时间等模压工艺参数对复合材料力学性能的影响。结果表明,无论保压时间和CF含量如何变化,成型温度为170℃时的复合材料弯曲强度和缺口冲击强度总体上均比成型温度为150和160℃时的高,且在成型温度为170℃的条件下,不同CF含量的复合材料力学性能在保压时间为15 min时出现最大值的次数最多。据此,确定了短切CF质量分数在5%~25%范围内的热塑性PF/CF复合材料模压成型最佳工艺参数为成型温度170℃、保压时间15 min。  相似文献   

7.
芳纶短纤维/聚氨酯树脂复合材料成型工艺研究   总被引:3,自引:0,他引:3  
成型工艺直接影响复合材料的性能。本文考察了芳纶短纤维/聚氨酯树脂复合材料模压成型工艺的预成型时间、模压温度、模压压强、模压时间等因素对复合材料拉伸强度的影响。结果表明,预成型时间4h,模压温度170℃,模压压强为4MPa,模压时间为30m in的工艺条件下可制备拉伸强度为35 MPa的芳纶短纤维/聚氨酯树脂复合材料。  相似文献   

8.
冯太纲  朱蕾娟  张如艳  羡瑜 《塑料》2023,(6):16-19+65
以杨木粉和聚乳酸为原料,利用烷基烯酮二聚体(AKD)对杨木粉进行表面改性处理,通过模压成型工艺制备了杨木粉/聚乳酸(PLA)复合材料。以模压温度、模压压力和保压时间为正交实验因素,将复合材料力学弯曲性能和冲击强度作为评价指标,分析了模压成型工艺对复合材料力学性能的影响;在此基础上分析了AKD含量对杨木粉/PLA复合材料力学性能和吸水性能的影响。结果表明,模压工艺对复合材料力学性能的影响程度依次为模压温度、模压压力、保压时间;当模压温度为170℃、模压压力为4 MPa、保压时间为6 min/次、5次保压、AKD含量为2%~3%时,制备的杨木粉/聚乳酸复合材料力学性能和吸水性能较好。  相似文献   

9.
杨培娟  黄健 《塑料》2014,(3):85-88
首次提出以玄武岩纤维增强热塑性聚酰亚胺,通过热模压工艺制备复合材料,通过考察成型工艺对冲击性能的影响,优化了成型工艺参数,即模压温度在360℃、压力在20 MPa、保压时间在30 min。在此基础上,进一步考察纤维含量对拉伸强度、断裂伸长率和弯曲强度的影响,结果发现:随着玄武岩纤维用量的增加,复合材料拉伸强度不断增大,但断裂伸长率下降,弯曲强度随着玄武岩用量增加而增大,表明复合材料刚性得到增强。考察了复合材料的阻燃性能,发现复合材料阻燃性能达到V0级,而且极限氧指数随着纤维用量增加,稍微增大,表明阻燃性能有一定提高。为汽车用摩擦材料提供一条思路。  相似文献   

10.
以碳纤维快速固化预浸料(ACTECH1201/SYT45)为成型材料,选择汽车车身典型零部件加强梁作为实验对象,研究了汽车加强梁零部件的快速模压成型工艺及其结构与性能。结果表明:采用快速模压成型工艺制得的碳纤维汽车加强梁零部件,其模压成型周期短,成型时间小于等于8.5 min;加强梁零部件的表面无褶皱、白斑、凹陷、气泡、外来物等缺陷;汽车加强梁零部件的固化度为100%,玻璃化转变温度大于120℃,厚度为3.01~3.36 mm,厚度均在公差范围内,满足设计要求。  相似文献   

11.
采用树脂与芳纶无纬布模压的方法,制备了一种具备防弹防刺功能的复合材料,讨论了模压温度、时间、压力等因素对其性能的影响。实验结果表明,以树脂和芳纶无纬布为原料制备的防弹防刺复合材料,其工艺优化条件为:模压时间15~30min,温度125℃,压力2~4MPa。在此条件下,制得的复合材料的防弹防刺综合性能最佳。  相似文献   

12.
对3233中温固化环氧树脂黏度-温度曲线、凝胶时间-温度曲线和DSC进行了分析。采用热熔法制备了其碳布预浸料,通过热压罐法、模压法和真空袋法成型复合材料层合板,进行性能测试并对比。结果表明,3233中温固化树脂固化工艺为(125±5)℃固化90~120 min。采用热熔法制备的3233/CF3052中温固化环氧碳布预浸料具有良好工艺性能。模压成型和热压罐成型的层合板力学性能相当,略高于真空袋成型。3233树脂具有良好的韧性,夹层结构的抗滚筒剥离强度高,其预浸料可与蜂窝直接共固化。  相似文献   

13.
利用差示扫描量热分析仪研究了一种快速固化环氧树脂体系的固化工艺参数,确定了以真空辅助树脂灌注工艺制备快速固化环氧树脂/碳纤维复合材料的成型方法,并与常规固化环氧树脂体系制备的碳纤维复合材料进行对比,采用傅里叶变换红外光谱仪对两种材料的树脂基体进行了分析,考察了两种复合材料的纤维含量、孔隙率及力学性能,最后通过扫描电子显微镜观察了快速固化树脂基体与碳纤维的界面结合性。结果表明,快速固化树脂在99℃下固化6 min后固化度可达96%,能够大幅缩减碳纤维复合材料的成型时间,以其制备的碳纤维复合材料拉伸强度比常规固化环氧树脂复合材料高11.20%,弯曲强度高16.92%,纵横剪切强度高7.44%,快速固化树脂与碳纤维界面结合性良好。  相似文献   

14.
研究了成型温度和成型压力对兵乓球拍用碳纤维复合材料弯曲强度、弯曲模量和拉伸强度的影响,并对断口形貌进行了观察。结果表明,随着成型温度和成型压力的增大,碳纤维复合材料的弯曲强度和弯曲模量都呈现先增加而后减小特征,在成型温度为380℃、成型压力为4.7MPa时取得弯曲强度和弯曲模量最大值。随着成型温度和成型压力的增大,碳纤维复合材料的拉伸强度呈现先增加而后减小特征,在成型温度为380℃、成型压力为4.7MPa时取得拉伸强度最大值,为1.71GPa。碳纤维复合材料适宜的成型工艺为:成型温度380℃、成型压力4.7MPa。  相似文献   

15.
根据金属基复合材料结构特点和性能要求,设计了相应的实验方案,并进行压制成型实验,在压制成型过程中采用不同的压力、温度、时间进行实验,制备了结合强度高的金属基复合材料。通过拉伸试验,研究了压力、温度以及时间3个工艺参数与复合材料结合性能之间的关系。结果表明,当复合材料模压成型压力为8~9 MPa,成型温度为320~330℃,成型时间为30~35 min时,复合材料的结合强度最佳。  相似文献   

16.
在3.6 MPa的初始模压压力下,分别改变模压温度、模压时间和冷却方式对超高分子量聚乙烯(PE–UHMW)进行了模压成型,研究了PE–UHMW模压成型工艺对其结晶度和耐磨性能的影响。结果表明,在不同的模压温度或模压时间下,PE–UHMW结晶度与耐磨性能的变化没有理想的对应关系;但从整体结果可以得出,较高模压温度或较长的模压时间会导致PE–UHMW结晶度降低,耐磨性能变差。模压温度为230℃、模压时间为30 min时,PE–UHMW的耐磨性能最好。不同冷却方式对PE–UHMW结晶度的影响较小,对耐磨性能的影响较大。采用较低的冷却速率并在PE–UHMW结晶温度下保温30 min,可以得到耐磨性能优异的PE–UHMW。  相似文献   

17.
以对位芳纶增强无卤阻燃环氧树脂预浸料为原料,采用模压成型工艺制备了芳纶/环氧复合材料层合板。对不同成型压力条件下复合材料层合板的厚度、纤维体积含量以及力学性能进行了测试,用金相显微镜对不同成型压力条件下试样横截面的微观形貌进行表征,并对层合板的阻燃性能进行了测试。结果表明,在固化温度(160℃)和固化时间(90 min)恒定的情况下,当固化压力为0.8 MPa时,层合板厚度和纤维体积含量基本不再发生变化,层间结合紧密,综合力学性能最优,成型质量最好。层合板的极限氧指数为44.57%,垂直燃烧等级可达V-0级,耐热性能、阻燃性能优异。  相似文献   

18.
针对连续碳纤维增强热固性酚醛树脂复合材料3D打印成型工艺的技术难题,本文提出了浸渍-原位预固化-后固化的3D打印成型方案,实现了连续碳纤维增强热固性酚醛树脂复合材料的3D打印成型,并研究浸渍温度对酚醛树脂接触角与表面张力,以及打印工艺对样件形貌和力学性能的影响规律。结果表明:当浸渍温度为40 ℃,预固化温度为180 ℃时,纤维-树脂界面结合效果最佳,原料具备成型条件;当打印间距为0.5 mm时,样件的弯曲强度及模量达到最大值,分别为660.00 MPa和57.99 GPa,层间剪切强度达到20.14 MPa。此连续碳纤维增强热固性酚醛树脂复合材料一体化制备工艺解决了3D打印热固性树脂原位成型难的问题,为制备具有复杂结构的连续纤维增强热固性树脂复合材料提供了参考。  相似文献   

19.
连续碳纤维增强聚醚醚酮(CF/PEEK)复合材料是重要的医疗器械及航空航天热塑性复合材料,可采用模压成型工艺制备层合板及结构,其工艺参数影响复合材料力学性能。本文主要考察了模压成型温度、压力以及降温速率等参数对CF/PEEK复合材料Ⅰ型层间断裂韧性(GIC)的影响规律,并通过扫描电镜表征复合材料撕裂面的微观形貌,分析材料失效模式。较高的模压成型温度可提高基体分子链流动性,适中的成型压力有利于控制树脂不被过多挤出模具,适中的降温速率可降低结晶度并抑制界面粘结强度的损失,均有利于提高CF/PEEK复合材料的GIC。  相似文献   

20.
采用自制的热隔膜成型设备制备了3234/T700碳纤维复合材料梁/肋零件预制件,并在热压罐中进行固化,通过对固化后零件的表观质量、力学性能、厚度、内部缺陷进行表征,考察了成型温度、成型时间、成型压力对成型质量的影响。结果表明,适当地提高成型温度、成型压力以及延长成型时间可提高固化后零件的质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号