首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ni catalysts supported on γ-Al2O3, CeO2 and CeO2–Al2O3 systems were tested for catalytic CO2 reforming of methane into synthesis gas. Ni/CeO2–Al2O3 catalysts showed much better catalytic performance than either CeO2- or γ-Al2O3-supported Ni catalysts. CeO2 as a support for Ni catalysts produced a strong metal–support interaction (SMSI), which reduced the catalytic activity and carbon deposition. However, CeO2 had positive effect on catalytic activity, stability, and carbon suppression when used as a promoter in Ni/γ-Al2O3 catalysts for this reaction. A weight loading of 1–5 wt% CeO2 was found to be the optimum. Ni catalysts with CeO2 promoters reduced the chemical interaction between nickel and support, resulting in an increase in reducibility and stronger dispersion of nickel. The stability and less coking on CeO2-promoted catalysts are attributed to the oxidative properties of CeO2.  相似文献   

2.
Co3O4/CeO2 composite oxides with different cobalt loading (5, 15, 30, 50, 70 wt.% as Co3O4) were prepared by co-precipitation method and investigated for the oxidation of methane under stoichiometric conditions. Pure oxides, Co3O4 and CeO2 were used as reference. Characterization studies by X-ray diffraction (XRD), BET, temperature programmed reduction/oxidation (TPR/TPO) and X-ray photoelectron spectroscopy (XPS) were carried out.

An improvement of the catalytic activity and thermal stability of the composite oxides was observed with respect to pure Co3O4 in correspondence of Co3O4–CeO2 containing 30% by weight of Co3O4. The combined effect of cobalt oxide and ceria, at this composition, strongly influences the morphological and redox properties of the composite oxides, by dispersing the Co3O4 phase and promoting the efficiency of the Co3+–Co2+ redox couple. The presence in the sample Co3O4(30 wt.%)–CeO2 of a high relative amount of Ce3+/(Ce4+ + Ce3+) as detected by XPS confirms the enhanced oxygen mobility.

The catalysts stability under reaction conditions was investigated by XRD and XPS analysis of the used samples, paying particular attention to the Co3O4 phase decomposition. Methane oxidation tests were performed over fresh (as prepared) and thermal aged samples (after ageing at 750 °C for 7 h, in furnace). The resistance to water vapour poisoning was evaluated for pure Co3O4 and Co3O4(30 wt.%)–CeO2, performing the tests in the presence of 5 vol.% H2O. A methane oxidation test upon hydrothermal ageing (flowing at 600 °C for 16 h a mixture 5 vol.% H2O + 5 vol.%O2 in He) of the Co3O4(30 wt.%)–CeO2 sample was also performed. All the results confirm the superiority of this composite oxide.  相似文献   


3.
The selective catalytic reduction of NO by H2 under strongly oxidizing conditions (H2-SCR) in the low-temperature range of 100–200 °C has been studied over Pt supported on a series of metal oxides (e.g., La2O3, MgO, Y2O3, CaO, CeO2, TiO2, SiO2 and MgO-CeO2). The Pt/MgO and Pt/CeO2 solids showed the best catalytic behavior with respect to N2 yield and the widest temperature window of operation compared with the other single metal oxide-supported Pt solids. An optimum 50 wt% MgO-50wt% CeO2 support composition and 0.3 wt% Pt loading (in the 0.1–2.0 wt% range) were found in terms of specific reaction rate of N2 production (mols N2/gcat s). High NO conversions (70–95%) and N2 selectivities (80–85%) were also obtained in the 100–200 °C range at a GHSV of 80,000 h−1 with the lowest 0.1 wt% Pt loading and using a feed stream of 0.25 vol% NO, 1 vol% H2, 5 vol% O2 and He as balance gas. Addition of 5 vol% H2O in the latter feed stream had a positive influence on the catalytic performance and practically no effect on the stability of the 0.1 wt% Pt/MgO-CeO2 during 24 h on reaction stream. Moreover, the latter catalytic system exhibited a high stability in the presence of 25–40 ppm SO2 in the feed stream following a given support pretreatment. N2 selectivity values in the 80–85% range were obtained over the 0.1 wt% Pt/MgO-CeO2 catalyst in the 100–200 °C range in the presence of water and SO2 in the feed stream. The above-mentioned results led to the obtainment of patents for the commercial exploitation of Pt/MgO-CeO2 catalyst towards a new NOx control technology in the low-temperature range of 100–200 °C using H2 as reducing agent. Temperature-programmed desorption (TPD) of NO, and transient titration of the adsorbed surface intermediate NOx species with H2 experiments, following reaction, have revealed important information towards the understanding of basic mechanistic issues of the present catalytic system (e.g., surface coverage, number and location of active NOx intermediate species, NOx spillover).  相似文献   

4.
Pt supported on CeO2 and 10 wt.% La3+-doped CeO2 catalysts have been prepared, characterised and tested for soot oxidation by O2 in TGA. The reaction mechanism has been studied in a TAP reactor with labelled O2. Isotopic oxygen exchange between molecular O2 and ‘O’ on the support/catalyst was observed and soot oxidation is being carried out by lattice oxygen. TAP studies further show that Pt improves O2 adsorption and, therefore, 5 wt.% Pt-containing catalysts are more active for soot oxidation than the counterpart supports. In addition, CeO2 doping by La3+ leads to an improved support, since La3+ stabilises the structure of CeO2 when calcined at high temperature (1000 °C) and minimises sintering. In addition, La3+ improves the Ce4+/Ce3+ reduction as deduced from H2-TPR experiments and favours oxygen mobility into the lattice. A synergetic effect of Pt and La3+ is observed, Pt-containing La3+-doped CeO2 being the most active catalyst for soot oxidation by O2 among the samples studied.  相似文献   

5.
A. Yee  S. J. Morrison  H. Idriss   《Catalysis Today》2000,63(2-4):327-335
The reactions of ethanol over Rh/CeO2 have been investigated using the techniques of temperature programmed desorption (TPD) and FT-IR spectroscopy, in addition to steady state catalytic tests. A comparison with previous studies of ethanol adsorption over Pd/CeO2 [J. Catal. 186 (1999) 279] and Pt/CeO2 [J. Catal. 191 (2000) 30] catalysts is presented. The apparent activation energy for the reaction was 49, 40, and 43 kJ mol−1 for Rh/CeO2, Pd/CeO2 and Pt/CeO2, respectively, while the turnover number (TON) at 400 K was 5.9, 8.6 and 2.6, respectively. Surface compositions of catalysts were characterised by XPS. A decrease of the atomic O(1s)/Ce(3d) ratio of the CeO2 support indicates its partial reduction upon addition of the noble metal. The extent of reduction per metal atom was in the following order: Pt>Pd>Rh. FT-IR and TPD studies have shown that dehydrogenation of ethanol to acetaldehyde occurred over Pd/CeO2, Pt/CeO2 and Rh/CeO2. Moreover, Rh/CeO2 readily dissociated the C–C bond of ethanol at room temperature to form adsorbed CO (IR bands at 1904–2091 cm−1). This was corroborated by the low desorption temperature of CH4 over Rh/CeO2 (450 K) when compared to that of Pd/CeO2 (550 K) or Pt/CeO2 (585 K).  相似文献   

6.
A series of 1 wt.%Pt/xBa/Support (Support = Al2O3, SiO2, Al2O3-5.5 wt.%SiO2 and Ce0.7Zr0.3O2, x = 5–30 wt.% BaO) catalysts was investigated regarding the influence of the support oxide on Ba properties for the rapid NOx trapping (100 s). Catalysts were treated at 700 °C under wet oxidizing atmosphere. The nature of the support oxide and the Ba loading influenced the Pt–Ba proximity, the Ba dispersion and then the surface basicity of the catalysts estimated by CO2-TPD. At high temperature (400 °C) in the absence of CO2 and H2O, the NOx storage capacity increased with the catalyst basicity: Pt/20Ba/Si < Pt/20Ba/Al5.5Si < Pt/10Ba/Al < Pt/5Ba/CeZr < Pt/30Ba/Al5.5Si < Pt/20Ba/Al < Pt/10BaCeZr. Addition of CO2 decreased catalyst performances. The inhibiting effect of CO2 on the NOx uptake increased generally with both the catalyst basicity and the storage temperature. Water negatively affected the NOx storage capacity, this effect being higher on alumina containing catalysts than on ceria–zirconia samples. When both CO2 and H2O were present in the inlet gas, a cumulative effect was observed at low temperatures (200 °C and 300 °C) whereas mainly CO2 was responsible for the loss of NOx storage capacity at 400 °C. Finally, under realistic conditions (H2O and CO2) the Pt/20Ba/Al5.5Si catalyst showed the best performances for the rapid NOx uptake in the 200–400 °C temperature range. It resulted mainly from: (i) enhanced dispersions of platinum and barium on the alumina–silica support, (ii) a high Pt–Ba proximity and (iii) a low basicity of the catalyst which limits the CO2 competition for the storage sites.  相似文献   

7.
The influence of catalyst pre-treatment temperature (650 and 750 °C) and oxygen concentration (λ = 8 and 1) on the light-off temperature of methane combustion has been investigated over two composite oxides, Co3O4/CeO2 and Co3O4/CeO2–ZrO2 containing 30 wt.% of Co3O4. The catalytic materials prepared by the co-precipitation method were calcined at 650 °C for 5 h (fresh samples); a portion of them was further treated at 750 °C for 7 h, in a furnace in static air (aged samples).

Tests of methane combustion were carried out on fresh and aged catalysts at two different WHSV values (12 000 and 60 000 mL g−1 h−1). The catalytic performance of Co3O4/CeO2 and Co3O4/CeO2–ZrO2 were compared with those of two pure Co3O4 oxides, a sample obtained by the precipitation method and a commercial reference. Characterization studies by X-ray diffraction (XRD), BET and temperature-programmed reduction (TPR) show that the catalytic activity is related to the dispersion of crystalline phases, Co3O4/CeO2 and Co3O4/CeO2–ZrO2 as well as to their reducibility. Particular attention was paid to the thermal stability of the Co3O4 phase in the temperature range of 750–800 °C, in both static (in a furnace) and dynamic conditions (continuous flow). The results indicate that the thermal stability of the phase Co3O4 heated up to 800 °C depends on the size of the cobalt oxide crystallites (fresh or aged samples) and on the oxygen content (excess λ = 8, stoichiometric λ = 1) in the reaction mixture. A stabilizing effect due to the presence of ceria or ceria–zirconia against Co3O4 decomposition into CoO was observed.

Moreover, the role of ceria and ceria–zirconia is to maintain a good combustion activity of the cobalt composite oxides by dispersing the active phase Co3O4 and by promoting the reduction at low temperature.  相似文献   


8.
MnOx–CeO2 mixed oxides with a Mn/(Mn + Ce) molar ratios of 0–1 were prepared by a modified coprecipitation method and investigated for the complete oxidation of formaldehyde. The MnOx–CeO2 with Mn/(Mn + Ce) molar ratio of 0.5 exhibited the highest catalytic activity among the MnOx–CeO2 mixed oxides. Structure analysis by X-ray powder diffraction and temperature-programmed reduction of hydrogen revealed that the formation of MnOx–CeO2 solid solution greatly improved the low-temperature reducibility, resulting in a higher catalytic activity for the oxidation of formaldehyde. Promoting effect of Pt on the MnOx–CeO2 mixed oxide indicated that both the Pt precursors and the reduction temperature greatly affected the catalytic performance. Pt/MnOx–CeO2 catalyst prepared from chlorine-free precursor showed extremely high activity and stability after pretreatment with hydrogen at 473 K. 100% conversion of formaldehyde was achieved at ambient temperature and no deactivation was observed for 120 h time-on-stream. The promoting effect of Pt was ascribed to enhance the effective activation of oxygen molecule on the MnOx–CeO2 support.  相似文献   

9.
CeO2 and CeReOx_y catalysts are prepared by the calcination at different temperatures (y = 500–1000 °C) and having a different composition (Re = La3+ or Pr3+/4+, 0–90 wt.%). The catalysts are characterised by XRD, H2-TPR, Raman, and BET surface area. The soot oxidation is studied with O2 and NO + O2 in the tight and loose contact conditions, respectively. CeO2 sinters between 800–900 °C due to a grain growth, leading to an increased crystallite size and a decreased BET surface area. La3+ or Pr3+/4+ hinders the grain growth of CeO2 and, thereby, improving the surface catalytic properties. Using O2 as an oxidant, an improved soot oxidation is observed over CeLaOx_y and CePrOx_y in the whole dopant weight loading and calcination temperature range studied, compared with CeO2. Using NO + O2, the soot conversion decreased over CeLaOx_y catalysts calcined below 800 °C compared with the soot oxidation over CeO2_y. CePrOx_y, on the other hand, showed a superior soot oxidation activity in the whole composition and calcination temperature range using NO + O2. The improvement in the soot oxidation activity over the various catalysts with O2 can be explained based on an improvement in the external surface area. The superior soot oxidation activity of CePrOx_y with NO + O2 is explained by the changes in the redox properties of the catalyst as well as surface area. CePrOx_y, having 50 wt.% of dopant, is found to be the best catalyst due to synergism between cerium and praseodymium compared to pure components. NO into NO2 oxidation activity, that determines soot oxidation activity, is improved over all CePrOx catalysts.  相似文献   

10.
Methane combustion over Pd/Al2O3 catalysts with and without added Pt and CeO2 in both oxygen-rich and methane-rich mixtures at temperatures in the range 250–520°C has been investigated using a temperature-programmed reaction procedure with on-line gas analysis (FTIR). During the temperature loop under oxygen-rich conditions, there was an appreciable hysteresis in the activity of unmodified Pd/Al2O3, which was greatly enhanced over Pd–Pt/Al2O3. Over both catalysts the hysteresis was reversed under slightly methane-rich atmospheres, and as temperature was reduced, a sudden collapse or fluctuations in activity were shown respectively over Pd–Pt/Al2O3 and Pd/Al2O3. Such non-steady behaviour was almost eliminated over Pd/Al2O3–CeO2. Under a very narrow range of conditions and over a Pd/Al2O3 packed bed, oscillation of methane combustion was observed.  相似文献   

11.
This work aims at exploring the thermal ageing mechanism of Pt on ceria-based mixed oxides and the corresponding effect on the oxygen storage capacity (OSC) performance of the support material. Pt was supported on low-surface-area CeO2–ZrO2–La2O3 mixed oxides (CK) by impregnation method and subsequently calcined in static air at 500, 700 and 900 °C, respectively. The evolutions of textural, microstructural and redox properties of catalysts after the thermal treatments were identified by means of X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), temperature programmed reduction (TPR) and high-resolution transmission electron microscope (HRTEM). The results reveal that, besides the sintering of Pt, encapsulation of metal by the mixed oxides occurs at the calcination temperature of 700 °C and above. The burial of Pt crystallites by support particles is proposed as a potential mechanism for the encapsulation. Further, the HRTEM images show that the distortion of the mixed oxides lattice and other crystal defects are distributed at the metal/oxides interface, probably indicating the interdiffusion/interaction between the metal and mixed oxide. In this way, encapsulation of Pt is capable to promote the formation of Ce3+ or oxygen vacancy on the surface and in the bulk of support. The OSC results show that the reducibility and oxygen release behavior of catalysts are related to both the metal dispersion and metal/oxides interface, and the latter seems to be more crucial for those supported on low-surface-area mixed oxides. Judging by the dynamic oxygen storage capacity (DOSC), oxygen storage capacity complete (OSCC) and oxygen releasing rate, the catalyst calcined at 700 °C shows the best OSC performance. This evident promotion of OSC performance is believed to benefit from the partial encapsulation of Pt species, which leads to the increment of Ce3+ or oxygen vacancies both on the surface and in the bulk of oxides despite a loss of chemisorption sites on the surface of metal particles.  相似文献   

12.
Selective catalytic reduction (SCR) of NO with methane in the presence of excess oxygen has been investigated over a series of Mn-loaded sulfated zirconia (SZ) catalysts. It was found that the Mn/SZ with a metal loading of 2–3 wt.% exhibited high activity for the NO reduction, and the maximum NO conversion over the Mn/SZ catalyst was higher than that over Mn/HZSM-5. NH3–TPD results of the catalysts showed that the sulfation process of the supports resulted in the generation of strong acid sites, which is essential for the SCR of NO with methane. On the other hand, the N2 adsorption and the H2–TPR of the catalysts demonstrated that the presence of the SO42− species promoted the dispersion of the metal species and made the Mn species less reducible. Such an increased dispersion of metal species suppressed the combustion reaction of CH4 by O2 and increased the selectivity towards NO. The Mn/SZ catalysts prepared by different methods exhibited similar activities in the SCR of NO with methane, indicating the importance of SO42−. The most attractive feature of the Mn/SZ catalysts was that they were more tolerant to water and SO2 poisoning than Mn/HZSM-5 catalysts and exhibited higher reversibility after removal of SO2.  相似文献   

13.
Pt/Al2O3 catalysts with Pt loadings ranging from 0.5 to 11 wt.% were synthesized by supercritical carbon dioxide (scCO2) deposition method. Transmission electron microscopy (TEM) images showed that the synthesized catalysts contained small Pt nanoparticles (1–4 nm in diameter) with a narrow size distribution, no observable agglomeration, and uniformly dispersed on the alumina support. The catalysts were found to be active for hydrodesulfurization of dibenzothiophene (DBT) dissolved in n-hexadecane (n-HD) without sulfiding the metal phase. The reaction proceeded only via the direct hydrogenolysis route in the temperature range 310–400 °C and at atmospheric pressure. The activity increased with increasing the metal loading. Increasing [H2]0/[DBT]0 by either increasing [H2]0 or decreasing [DBT]0, increased the DBT conversion. At a fixed weight hourly space velocity and feed concentration, conversion did not increase with increasing temperature beyond 330 °C. The presence of toluene inhibited the catalyst activity presumably due to competitive adsorption between DBT and toluene. Under the operating conditions, the reaction was far from equilibrium.  相似文献   

14.
In the steam gasification of biomass, the additive effect of noble metals such as Pt, Pd, Rh and Ru to the Ni/CeO2/Al2O3 catalyst was investigated. Among these noble metals, the addition of Pt was most effective even when the loading amount of added Pt was as small as 0.01 wt.%. In addition, the catalyst characterization suggests the formation of the Pt–Ni alloy over the Pt/Ni/CeO2/Al2O3.  相似文献   

15.
Coprecipitated Fe-Al2O3, Fe-Co-Al2O3 and Fe-Ni-Al2O3 catalysts is shown to be very efficient in carbon deposition during methane decomposition at moderate temperatures (600–650 °C). The carbon capacity of the most efficient bimetallic catalysts containing 50–65 wt.% Fe, 5–10 wt.% Co (or Ni) and 25–40 wt.% Al2O3 is found to reach 145 g/gcat. Most likely, their high efficiency is due to specific crystal structures of the metal particles and formation of optimum particle size distribution. According to the TEM data, catalytic filamentous carbon (CFC) is formed on them as multiwall carbon nanotubes (MWNTs). The phase composition of the catalysts during methane decomposition is studied using a complex of physicochemical methods (XRD, REDD, Mössbauer spectroscopy and EXAFS). Possible mechanisms of the catalyst deactivation are discussed.  相似文献   

16.
The catalytic performance of mono- and bimetallic Pd (0.6, 1.0 wt.%)–Pt (0.3 wt.%) catalysts supported on ZrO2 (70, 85 wt.%)–Al2O3 (15, 0 wt.%)–WOx (15 wt.%) prepared by sol–gel was studied in the hydroisomerization of n-hexane. The catalysts were characterized by N2 physisorption, XRD, TPR, XPS, Raman, NMR, and FT-IR of adsorbed pyridine. The preparation of ZrW and ZrAlW mixed oxides by sol–gel favored the high dispersion of WOx and the stabilization of zirconia in the tetragonal phase. The Al incorporation avoided the formation of monoclinic-WO3 bulk phase. The catalysts increased their SBET for about 15% promoted by Al2O3 addition. Various oxidation states of WOx species coexist on the surface of the catalysts after calcination. The structure of the highly dispersed surface WOx species is constituted mainly of isolated monotungstate and two-dimensional mono-oxotungstate species in tetrahedral coordination. The activity of Pd/ZrW catalysts in the hydroisomerization of n-hexane is promoted both with the addition of Al to the ZrW mixed oxide and the addition of Pt to Pd/ZrAlW catalysts. The improvement in the activity of Pd/ZrAlW catalysts is ascribed to a moderated acid strength and acidity, which can be correlated to the coexistence of W6+ and reduced-state WOx species (either W4+ or W0). The addition of Pt to the Pd/ZrAlW catalyst does not modify significantly its acidic character. Selectivity results showed that the catalyst produced 2MP, 3MP and the high octane 2,3-dimethylbutane (2,3-DMB) and 2,2-dimethylbutane (2,2-DMB) isomers.  相似文献   

17.
The behaviour of a Pt(1 wt.%) supported on CeO2–ZrO2(20 wt.%)/Al2O3(64 wt.%)–BaO(16 wt.%) as a novel NOx storage–reduction catalyst is studied by reactivity tests and DRIFT experiments and compared with that of Pt(1%)–BaO(15 wt.%) on alumina. The former catalyst, designed as a hydrothermally stable sample, is composed of an alumina modified with Ba ions and an overlayer of ceria-zirconia. The results pointed out that during the calcination barium ions migrates over the surface of the catalyst which thus show a good NOx storage–reduction behaviour comparable with that of Pt–BaO on alumina, although Ba ions result much better dispersed.  相似文献   

18.
The present work focuses on the development of novel Cu-Pd bimetallic catalysts supported on nano-sized high-surface-area CeO2 for the oxygen-assisted water–gas-shift (OWGS) reaction. High-surface-area CeO2 was synthesized by urea gelation (UG) and template-assisted (TA) methods. The UG method offered CeO2 with a BET surface area of about 215 m2/g, significantly higher than that of commercially available CeO2. Cu and Pd were supported on CeO2 synthesized by the UG and TA methods and their catalytic performance in the OWGS reaction was investigated systematically. Catalysts with about 30 wt% Cu and 1 wt% Pd were found to exhibit a maximum CO conversion close to 100%. The effect of metal loading method and the influence of CeO2 support on the catalytic performance were also investigated. The results indicated that Cu and Pd loaded by incipient wetness impregnation (IWI) exhibited better performance than that prepared by deposition–precipitation (DP) method. The difference in the catalytic activity was related to the lower Cu surface concentration, better Cu–Ce and Pd–Ce interactions and improved reducibility of Cu and Pd in the IWI catalyst as determined by the X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) studies. A direct relation between BET surface area of the CeO2 support and CO conversion was also observed. The Cu-Pd bimetallic catalysts supported on high-surface-area CeO2 synthesized by UG method exhibited at least two-fold higher CO conversion than the commercial CeO2 or that obtained by TA method. The catalyst retains about 100% CO conversion even under extremely high H2 concentration.  相似文献   

19.
Oxidation of propene and propane to CO2 and H2O has been studied over Au/Al2O3 and two different Au/CuO/Al2O3 (4 wt.% Au and 7.4 wt.% Au) catalysts and compared with the catalytic behaviour of Au/Co3O4/Al2O3 (4.1 wt.% Au) and Pt/Al2O3 (4.8 wt.% Pt) catalysts. The various characterization techniques employed (XRD, HRTEM, TPR and DR-UV–vis) revealed the presence of metallic gold, along with a highly dispersed CuO (6 wt.% CuO), or more crystalline CuO phase (12 wt.% CuO).

A higher CuO loading does not significantly influence the catalytic performance of the catalyst in propene oxidation, the gold loading appears to be more important. Moreover, it was found that 7.4Au/CuO/Al2O3 is almost as active as Pt/Al2O3, whereas Au/Co3O4/Al2O3 performs less than any of the CuO-containing gold-based catalysts.

The light-off temperature for C3H8 oxidation is significantly higher than for C3H6. For this reaction the particle size effect appears to prevail over the effect of gold loading. The most active catalysts are 4Au/CuO/Al2O3 (gold particles less than 3 nm) and 4Au/Co3O4/Al2O3 (gold particles less than 5 nm).  相似文献   


20.
The introduction of trivalent cation — Y3+ or La3+ — into the lattice of CeO2–ZrO2 solid solutions allows to stabilise a cubic structure at low ceria content (30 mol%). The reducibility of the samples has been compared in the experiments of temperature-programmed reduction (TPR). The introduction of lanthanum cations decreases the amount of hydrogen consumed during TPR, while the introduction of yttrium ones increases this value. At the same time, the value of temperature of the maximum speed of reduction (Tmax) is independent on the trivalent dopant. The reducibility of these solid solutions did not change during repeated red–ox treatments at temperature below 1220 K. It is connected with the high thermostability of all systems in this temperature interval. TPR up to 1470 K causes a significant shift of Tmax value to higher temperature and a slight decrease of hydrogen consumption in two to three cycles. It is suggested that this alterations are connected with the sharp decrease of the specific surface area of all samples and partially phase decomposition of CeO2–ZrO2 and Y2O3–CeO2–ZrO2 solid solutions. Raman characterisation of the oxygen sublattice of the fresh samples and of the samples after TPR has been carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号