首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 862 毫秒
1.
SiCp1/ZrB2超高温陶瓷的制备及性能   总被引:1,自引:0,他引:1  
研究了碳化硅晶片(SiCp1)增韧二硼化锆(ZrB2)陶瓷的制备及其力学性能.采用热压烧结方法,在烧结温度1950℃、保温时间1h、压力20MPa、流动氩气气氛下,制备了高致密度的SiCp1/ZrB2复合材料.通过X射线衍射分析、扫描电子显微镜、三点弯曲法和单边切口梁法对SiCp1/ZrB2陶瓷复合材料的物相、显微结构和力学性能进行了研究,结果表明:随着SiCp1的加入,SiCp1/ZrB2复合材料的相对致密度和断裂韧性都得到了较大提高,当SiCp1添加量为15%(体积分数)时,相对致密度达到99%,断裂韧性达到(8.35±0.26)MPa·m1/2,抗弯强度达到(522±49)MPa.用轧膜法制备的SiCp1定向排列的SiCp1/ZrB2复合材料的力学性能略有下降.  相似文献   

2.
以ZrB2为基体材料,分别采用添加SiC颗粒(SiCp)、SiC晶须(SiCw)和SiC晶片(SiCpl)作为增韧相,采用热压烧结技术制备了SiC/ZrB2陶瓷基复合材料,分析了不同增韧相的种类和添加量对ZrB2陶瓷强韧化效果的影响,并通过层状结构设计,采用放电等离子体烧结工艺制备出ZrB2基层状复合陶瓷材料,研究了层状结构对ZrB2陶瓷强韧化效果的影响。结果表明:添加SiC颗粒、晶须或晶片,采用热压烧结可以制备出接近完全致密的SiC/ZrB2陶瓷基复合材料;与单独添加SiC颗粒或晶须相比,同时添加SiC颗粒和晶须的增韧效果更加明显,而SiC晶片也可以起到较好的强韧化效果;通过层状结构设计,能够较大幅度地提高ZrB2陶瓷的断裂韧性,显示了很好的增韧效果。  相似文献   

3.
以Si粉为烧结助剂,SiC颗粒为增强剂,采用真空热压烧结工艺制备了SiCp/B4C陶瓷基复合材料。研究了SiCp对复合材料力学性能的影响。借助X射线衍射、扫描电镜等分析了复合材料的物相组成和微观结构。研究表明:添加的SiCp中粒径小的颗粒被包裹在主晶相中,粒径较大的颗粒分布在晶界上,形成"晶内-晶间"混合型复合陶瓷。当SiCp含量为4wt.%时,复合材料的弯曲强度和断裂韧性分别达到431MPa和5.41MPa.m1/2。复合材料力学性能的提高主要是由于残余应力引起的晶界强化以及断裂方式的转变。  相似文献   

4.
以非均相沉淀法制备了Cu包裹SiC颗村复合粉体,采用粉末冶金和真空热压法制备了SiCp(Cu)/Fe复合材料.利用XRD、SEM分析样品的物相组成和显微结构;利用阿基米德排水法、显微硬度计、三点弯曲法分别测试了,复合材料的密度、显微硬度和抗弯强度.研究了不同SiCp(Cu)加入量对SiCp(Cu)/Fe复合材料的力学性能的影响,并考察了Cu包裹层对复合材料性能的影响.结果表明:随着SiCp(Cu)加入量的增加,SiCp(Cu)/Fe复合材料的相对密度、显微硬度、抗弯强度均呈现先增加后减小的趋势.其中,当SiCp(Cu)含量为6 wt%时,在950℃热压烧结条件下,制备得到的SiCp(Cu)/Fe复合材料具有最优的力学性能,其相对密度达到97.2%,显微硬度为430.5HV,抗弯强度为788.96 MPa.与相同工艺条件下制得的SiC颗粒增强铁基复合材料的力学性能相比,分别提高了2.7%,55.3 HV和164.13 MPa.  相似文献   

5.
将ZrB2和ZrO2添加入到Al2O3基体中,采用熟压法制备了Al2O3/ZrB2/ZrO2复合陶瓷材料,ZrB2和ZrO2的体积含量分别为(92.2±0.1)%和(7.8±0.1)%.对复合材料的硬度、断裂韧性和抗弯强度进行了测试和分析.结果表明:当ZrB2/ZrO2体积分数为20%时,所制备的复合陶瓷的综合力学性能最优,其相对密度,抗弯强度和断裂韧度分别达到96.3%,520.5MPa和6.1 MPa·m1/2.Al2O3/ZrB2/ZrO2复合陶瓷断面的断裂模式为沿晶断裂和穿晶断裂混合模式.通过高温氧化试验发现Al2O3/ZrB2/ZrO2复合材料在500~700℃时开始氧化.  相似文献   

6.
以碳化硼为基体,碳化硅为增强相,炭黑为烧结助剂,通过热压烧结工艺制备了B_4C-SiC复合材料。测试了其力学性能,并借助SEM对烧结体进行断口形貌观察。结果表明:在本实验条件下,当SiC添加量在9 wt%时材料力学性能最佳,体积密度为2.548 g/cm~3,相对密度为99.6%,抗弯强度为403 MPa,断裂韧性为5.26MPa·m~(1/2)。显微组织结构致密,晶粒细小、均匀。增韧机理主要为SiC颗粒弥散引起的钉扎效应和裂纹偏转。  相似文献   

7.
针对ZrB2陶瓷材料的断裂韧性低及抗氧化性能差等问题,选择Mo粉、Si粉和B粉为第二相添加物,借助Mo–Si–B间的原位反应生成Mo5SiB2等三元或二元化合物与ZrB2复合,提高ZrB2陶瓷的断裂韧性与抗氧化性能。将混合粉体在1900℃、20MPa的条件下经热压烧结制备出致密的ZrB2陶瓷复合材料,所烧结样品的抗弯强度和断裂韧性随着Mo–Si–B含量的增加呈现先增加再降低再增加的趋势,当Mo–Si–B含量为20%(体积分数)时所得样品的断裂韧性最大,其值为(5.55±0.11)MPa·m1/2,当Mo–Si–B含量为30%时所得样品的抗弯强度最大,其值为(500±40)MPa。所烧结的样品都具有良好的抗氧化性能,其主要机理是在复合材料表面形成一定数量的玻璃相,阻止氧气向材料内部扩散。  相似文献   

8.
以SiC和Si微米粉为添加剂,采用无压烧结工艺制备了纳米SiC增韧的Al2O3陶瓷复合材料,探讨了SiC含量、烧结气氛和烧结温度对复合材料的烧成收缩率、微观形貌、抗弯强度、维氏硬度及断裂韧性的影响。结果显示:SiC的添加使复合材料的烧成收缩率下降,惰性气氛下复合材料的收缩率要大于氧化气氛和还原气氛时的收缩率。在氧化性气氛下烧结时,当SiC添加量为4%时,复合陶瓷的体积密度为3.80 g·cm^-3,抗弯强度、断裂韧性及维氏硬度均达到最大值,分别为480 MPa、5.12 MPa·m1/2、16.2 GPa。添加SiC后所得复合材料的基体颗粒为椭圆状,粒径为2μm左右,颗粒与颗粒之间结合紧密,颗粒形状的改变可能是因为烧结机理发生变化所致。纳米SiC颗粒位于晶界处,形成了由Al2O3-SiC-Al2O3搭桥联结的晶界,提高了晶界强度,导致裂纹只能在晶内传播。  相似文献   

9.
针对ZrB2陶瓷材料的断裂韧性低及抗氧化性能差等问题,选择Mo粉、Si粉和B粉为第二相添加物,借助Mo–Si–B间的原位反应生成Mo5SiB2等三元或二元化合物与ZrB2复合,提高ZrB2陶瓷的断裂韧性与抗氧化性能。将混合粉体在1900℃、20MPa的条件下经热压烧结制备出致密的ZrB2陶瓷复合材料,所烧结样品的抗弯强度和断裂韧性随着Mo–Si–B含量的增加呈现先增加再降低再增加的趋势,当Mo–Si–B含量为20%(体积分数)时所得样品的断裂韧性最大,其值为(5.55±0.11)MPa·m1/2,当Mo–Si–B含量为30%时所得样品的抗弯强度最大,其值为(500±40)MPa。所烧结的样品都具有良好的抗氧化性能,其主要机理是在复合材料表面形成一定数量的玻璃相,阻止氧气向材料内部扩散。  相似文献   

10.
针对ZrB2陶瓷材料的断裂韧性低及抗氧化性能差等问题,选择Mo粉、Si粉和B粉为第二相添加物,借助Mo–Si–B间的原位反应生成Mo5SiB2等三元或二元化合物与ZrB2复合,提高ZrB2陶瓷的断裂韧性与抗氧化性能。将混合粉体在1900℃、20MPa的条件下经热压烧结制备出致密的ZrB2陶瓷复合材料,所烧结样品的抗弯强度和断裂韧性随着Mo–Si–B含量的增加呈现先增加再降低再增加的趋势,当Mo–Si–B含量为20%(体积分数)时所得样品的断裂韧性最大,其值为(5.55±0.11)MPa·m1/2,当Mo–Si–B含量为30%时所得样品的抗弯强度最大,其值为(500±40)MPa。所烧结的样品都具有良好的抗氧化性能,其主要机理是在复合材料表面形成一定数量的玻璃相,阻止氧气向材料内部扩散。  相似文献   

11.
Si3N4 matrix composites reinforced by SiC whiskers, SiC particles, or both were fabricated using the hot-pressing technique. The mechanical properties of the composites containing various amounts of these SiC reinforcing materials and different sizes of SiC particles were investigated. Fracture toughness of the composites was significantly improved by introducing SiC whiskers and particles together, compared with that obtained by adding SiC whiskers or SiC particles alone. On increasing the size of the added SiC particles, the fracture toughness of the composites reinforced by both whiskers and particles was increased. Their fracture toughness also showed a strong dependence on the amount of SiC particles (average size 40 μm) and was a maximum at the particle content of 10 vol%. The maximum fracture toughness of these composites was 10.5 MPa·m1/2 and the flexural strength was 550 MPa after addition of 20 vol% of SiC whiskers and 10 vol% of SiC particles having an average particle size of 40 μm. These mechanical properties were almost constant from room temperature to temperatures around 1000°C. Fracture surface observations revealed that the reinforcing mechanisms acting in these composites were crack deflection and crack branching by SiC particles and pullout of SiC whiskers.  相似文献   

12.
以硅、活性碳和碳纳米管为添加剂,在1900℃、30 MPa条件下制备出了(Si C,CNTs)/Zr B2陶瓷基复合材料。研究了CNTs添加量对复合材料致密度和力学性能的影响。借助X射线衍射和扫描电镜分析了复合材料的物相组成和微观结构。研究结果表明:随着CNTs含量的增加,复合材料的致密度和力学性能呈先增加后减小的变化趋势。复合材料力学性能的提高主要归因于致密度的提高、晶粒的减小和CNTs的桥联、拔出机制。  相似文献   

13.
The influence of the addition of nanometer mullite particulates and SiC whiskers coated with alumina on the mechanical properties of tetragonal zirconia polycrystals (TZP) was studied. With increasing mullite( p ) content the high-temperature flexural strength increased, and a maximum value of 360 MPa at 1000°C was reached at 15 vol% mullite( p . Furthermore, 10 vol% SiC( w ) reinforced 15 vol% mullite/TZP composites improved the high-temperature strength up to 490 MPa at 1000°C, 2.7 times that of pure TZP matrix. This high-temperature strengthening is attributed to load transfer from TZP matrix to SiC( w ) and mullite particulates. Significant whisker pull-out and interface debonding were also observed on the fractured surfaces when SiC( w ) was coated with Al2O3 film.  相似文献   

14.
《Ceramics International》2020,46(3):2624-2629
TaC/SiC composites with 5 wt% SiC addition were densified by plasma-activated sintering (PAS) at 1500–1800 °C for 5 min under 30 MPa. The effects of plasma-activated sintering on microstructures, densification and mechanical properties of the composites were investigated. The results showed that TaC/SiC composites achieved a relative density more than 99% of the theoretical density at 1600 °C. A low eutectic liquid phase generated by the oxide on the particle surface was observed in the composite to realize a relatively low temperature sintering densification. While the TaC particle size decreased insignificantly with increasing sintering temperature, the transformation of morphology of SiC particles changing from equiaxed to elongated grain was activated, accompanying with a slight particle size decreasing of the SiC phase, thus promoting a relatively high flexural strength of 550 MPa under 1800 °C. Besides, some ultra-fine 2 nm Ta2Si was observed in the glassy pockets, strengthening the amorphous phase and thus increasing the flexural strength.  相似文献   

15.
Based on the RBAO technology, low-shrinkage mullite/SiC/ Al2O3/ZrO2 composites were fabricated. A powder mixture of 40 vol% Al, 30 vol% A12O3 and 30 vol% SiC was attrition milled in acetone with TZP balls which introduced a substantial ZrO2 wear debris into the mixture. The precursor powder was isopressed at 300–900 MPa and heattreated in air by two different cycles resulting in various phase ratios in the final products. During heating, Al oxidizes to Al2O3 completely, while SiC oxidizes to SiO2 only on its surface. Fast densification (at >1300°C) and mullite formation (at 1400°C) prevent further oxidation of the SiC particles. Because of the volume expansion associated with the oxidation of Al (28%), SiC (108%), and the mullitization (4.2%), sintering shrinkage is effectively compensated. The reaction-bonded composites exhibit low linear shrinkages and high strengths: shrinkages of 7.2%, 4.8%, and 3%, and strengths of 610, 580, and 490 MPa, corresponding to compaction pressure of 300, 600, and 900 MPa, respectively, were achieved in samples containing 49–55 vol% mullite. HIPing improved significantly the mechanical properties: a fracture strength of 490 MPa and a toughness of 4.1 MPa.m1/2 increased to 890 MPa and 6 MPa.m1/2, respectively.  相似文献   

16.
Sub-micrometer SiC particles were firstly added to the preceramic solution in the first infiltration step to enhance the mechanical properties of 2D Cf/SiC composites fabricated via polymer infiltration and pyrolysis (PIP) process. The effects of pyrolysis temperature and SiC-filler content on microstructures and properties of the composites were systematically studied. The results show that the failure stress and fracture toughness increased with the increase of pyrolysis temperature. SiC filler of sub-micron scale infiltrated into the composites increased the mechanical properties. As a result, for the finally fabricated composite infiltrated with a slurry containing 40 wt.% SiC filler, the failure stress was doubled compared to that without SiC filler addition, and the fracture toughness reached ≈10 MPa m1/2.  相似文献   

17.
Zirconia-toughened mullite (SiC/ZTM) nanocomposites were prepared by a chemical precipitation method. The samples showed good sinterability and could be densified to >98.7% of the theoretical density at 1350°–1550°C. Because of the addition of mullite seeds in the starting powder and the pinning effects of ZrO2 and SiC particles on mullite grain growth, a fine-grained microstructure formed. Mullite grains were generally equiaxed for the sample sintered at 1400°C; whereas, for the sample sintered at 1550°C, most mullite grains took a needlelike morphology, and SiC particles were primarily located within mullite grains. The strength and toughness increased with the increasing sintering temperature, and reached their respective maximum of 780 MPa and 3.7 MPa·m1/2 for the sample sintered at 1550°C.  相似文献   

18.
Hot-pressing of mullite and SiC–mullite matrix composites was performed at temperatures and pressures between 1500 and 1650°C and 5 and 15 MPa, respectively. Composites were produced using different precursors; sol–gel derived mullite and kaolinite/α-alumina. The precursor did not strongly affect the optimum density achieved, reaching 97·5% of theoretical for a 20 vol% SiC addition in both cases. The SiC platelet addition impaired densification kinetics in all composites compared to mullite monoliths. Fracture toughness, measured by the indentation strength in bending technique, was marginally higher for the sol–gel precursor material in both monolith and composite. Fracture toughness increased with SiC content for both materials. For example, for the sol-gel precursor material it increased from 2.9±0.1 MPa m1/2 for the monolith to 3.9±0.1 MPa m1/2 for the 20 vol% SiC composite. Similarly, hardness increased with SiC addition for both materials, but the hardness of the sol–gel material was greater than that of the kaolinite+α-alumina material for all compositions. The relationship between microstructure and mechanical properties is discussed.  相似文献   

19.
以SiC纳米纤维(SiCnf)为增强体,通过化学气相沉积在SiC纳米纤维表面沉积裂解碳(PyC)包覆层,并与SiC粉体、Al2O3-Y2O3烧结助剂共混制备陶瓷素坯,采用热压烧结工艺制备质量分数为10%的SiC纳米纤维增强SiC陶瓷基(SiCnf/SiC)复合材料。研究了PyC包覆层沉积时间对SiCnf/SiC陶瓷基复合材料的致密度、断裂面微观形貌和力学性能的影响。结果表明:在1 100 ℃下沉积60 min制备的PyC包覆层厚度为10 nm,且为结晶度较好的层状石墨结构;相比于纤维表面无包覆层的复合材料,复合材料的断裂韧性提高了35%,达到最大值(19.35±1.17) MPa·m1/2,抗弯强度为(375.5±8.5) MPa,致密度为96.68%。复合材料的断裂截面可见部分纳米纤维拔出现象,但SiCnf/SiC陶瓷基复合材料界面结合仍较强,纳米纤维拔出短,表现为脆性断裂。  相似文献   

20.
分别以SiC粉体和Ni包裹的SiC复合粉体为硬质相,采用热压工艺(1000°C,20°C/min,40 MPa和45 min)制备了SiC含量为1 wt%~9 wt%的SiC/Fe复合材料。采用扫描电镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)等研究了复合材料的界面反应物。研究结果表明:Ni过渡层的存在有效避免了SiC颗粒与Fe基体之间的化学反应。随着Ni包裹SiC粉体含量的增加,复合材料的相对密度和抗弯强度先增加后减小,当SiC(Ni)粉体含量为5 wt%时达到最大值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号