首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A controlled shear stress–shear rate rheometer was used to determine the viscoelastic behavior of cement paste incorporating various superplasticizers and subjected to prolonged mixing at high temperature. At a low applied shear stress range, the oscillatory shear strain/stress curve of cement paste was characteristic of a linear elastic solid; while the higher stress range was characteristic of a viscous liquid exhibiting a linear strain increase with increasing applied shear stress. The transition from solid-like to liquid-like behavior occurred over a very narrow stress increment. This transition stress corresponded to the yield stress parameter estimated from conventional flow curves using the Bingham model. The yield stress from oscillatory shear stress tests was estimated using the intersection between the viscous part of the oscillatory shear strain/stress curve and the oscillatory shear stress axis. In this study, equations describing the variation of shear strain versus shear stress beyond the solid–fluid transition for cement pastes incorporating various superplasticizers at different ambient temperatures and mixing times were developed using genetic algorithms (GA). The yield stress of cement pastes was subsequently predicted using the developed equations by calculating the stress corresponding to zero strain. A sensitivity analysis was performed to evaluate the effects of the mixing time, ambient temperature, and superplasticizer dosage on the calculated yield stress. It is shown that the computed yield stress values compare well with corresponding experimental data measured using oscillatory rheology.  相似文献   

2.
Resonant wave mixing is a promising technology based on employing non-linear waves to intensify heat and mass transfer and enhancing dispersion processes in mixed materials. In the present work, for the first time, resonant wave mixing was used to prepare film-forming dispersions based on gelatinized maize starch and spherical TiO2 nanoparticles (0.5–1.5 wt%) synthesized by sol–gel technique. Then, nanocomposite films were obtained by solution casting method. The dynamic viscoelastic properties, including relaxation spectra of the film-forming dispersions were investigated by oscillatory squeeze film rheometry, while the structure of the nanocomposite films was studied by X-ray diffraction, FTIR spectroscopy and scanning electron microscopy. The mechanical, water-related and UV-protective properties of the film materials were evaluated. It was shown that nanofiller incorporation enhanced the density of the 3D network structure of a gelatinized starch dispersion. The resonant wave treatment favored homogenous dispersion of the TiO2 nanoparticles in the nanocomposites. All nanocomposite film samples displayed higher tensile strength and lower water vapor permeability in comparison with starch films without the nanofiller. The obtained nanocomposites possessed UV-protective properties, which could be potentially applied to produce biodegradable packaging materials with improved functional characteristics.  相似文献   

3.
The paper investigates the possibility of using a shear wave reflection technique to monitor the viscoelastic behavior (represented by storage shear modulus and viscosity) of Portland cement paste at very early age. Three cement pastes with water/cement ratios equal to 0.4, 0.5 and 0.6 cured under water at a constant temperature of 25 °C were studied. By measuring the wave reflection coefficients and the phase angles of reflected ultrasonic waves, the dynamic storage shear moduli and the viscosity of the cement paste can be calculated. The calculated results of the storage modulus were compared with the results obtained directly from the oscillatory rheometric measurement. In addition, the viscosity calculated from the wave reflection measurements was compared with results obtained directly from the step rheometric method and a qualitative agreement was found. The results show that as a non-destructive method, the ultrasonic wave reflection method provides useful information about both the elastic and viscous behavior of cement pastes at very early age.  相似文献   

4.
This article reports on the effect of a diol prepared from a renewable resource, cardanol, on the synthesis, film formation and film properties of aqueous polyurethane dispersions. The PU dispersions were prepared by the acetone process from poly(tetramethylene ether)glycol (PTMEG) and isophorone diisocyanate (IPDI) prepolymer at constant NCO/OH ratio of 1:1.1. Dispersions with two different concentrations of cardanol diol (OH value 140 mg KOH/g) were prepared through chain extension and characterized for solid content, particle size, and particle-size distribution (PSD). Free films were prepared by casting and were studied for their thermal, mechanical, viscoelastic, and hydrophobic properties. Due to the broad PSD, the dispersions containing cardanol diol exhibit better film formation property in comparison to the butane diol chain-extended PU. Soft and flexible films were obtained using cardanol diol as chain extender, whereas brittle film was obtained with butane diol chain extender. Morphological characterization using atomic force microscopy (AFM) and scanning electron microscopy (SEM) suggests a heterogeneous and amorphous nature of the polyurethanes-containing cardanol diol. The thermomechanical and viscoelastic properties show that incorporation of cardanol diol decreases the glass transition temperature and modulus of the films but enhances the properties like thermal stability, hydrophobicity, elongation, etc., of the polyurethane films.  相似文献   

5.
Two series of impact polystyrene were studied; they had been obtained by grafting and by mechanical mixing, at two different known polybutadiene levels. Their biphasic structure had been characterized by optical microscopy and physicochemical separation. The following factors were investigated: morphology and content of the dispersed phase and continuous phase, composition of the dispersed phase, and molecular weight of the continuous phase. The elastic shear modulus and mechanical damping were measured. It was found that the elastic shear modulus of the two series of materials does not depend on the total polybutadiene content, as is often suggested in the literature, but on the rubbery dispersed phase content. The polybutadiene concentration of this phase, although varying between 100% for the mechanical mixes and 34% for one of the grafted polymers, does not influence the mentioned correlation. The particle size of the dispersed phase and the molecular weight the continuous phase have very little or no influence. The found correlation agrees with the theories for the moduli of models consisting of dispersions of spheres or particles in a matrix, like those of Kerner,13 Hashin,14,15 and Mackenzie.18  相似文献   

6.
Wei Yu  Chixing Zhou 《Polymer》2012,53(3):881-890
How the viscoelastic asymmetry affects the concentration fluctuation and its manifestation in rheology of miscible polymer blends are examined in this work. The linear viscoelastic stress of polymer blends is divided into the components stress and the stress due to concentration fluctuation. The dynamic coupling between the fluctuation in concentration and the stress is represented by the two-fluid model, which is linearized and solved under small amplitude oscillatory shear to give the concentration fluctuation induced stress. A strong influence of components’ viscoelasticity on the concentration fluctuation is clearly demonstrated in the viscoelastic asymmetric system through the enhancement in the elastic modulus at low frequency. The decisive parameter is the viscoelastic length which depends mainly on the dynamic asymmetric parameter and the zero shear viscosity of blends. It is also found that the dynamic coupling effect gradually fades as it gets close to the spinodal point, where pure concentration fluctuation dominates. The dynamic moduli due to the concentration fluctuation at spinodal point exhibits the same power law dependence on oscillatory frequency, which is a characteristic of critical gel and could be used as an alternative criteria to determine the spinodal temperature.  相似文献   

7.
Suspensions of epoxy with 10% by weight of organomodified montmorillonite clay [Cloisite 30B], prepared by two different methods, viz. intensive batch mixing and sonication, were investigated. The characterization of linear viscoelastic material functions of the suspension using small‐amplitude oscillatory shear during processing enabled the assessments of the dispersion capabilities of the two mixing methods. Thermal imaging was used to monitor the temperature distributions generated during mixing. Sonication was determined to be more effective in the dispersion of the clay into the epoxy resin than the intensive batch mixing process, as revealed by the significant increase of the dynamic properties upon sonication, which suggested that some degree of intercalation and exfoliation had taken place during sonication. The use of the linear viscoelastic material functions thus provided a relatively easy to implement method for the analysis of the dispersion effectiveness of the different processing methods and operating conditions. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
Yixiang Wang  Ang Lue  Lina Zhang   《Polymer》2009,50(23):5474-5481
Isothermal rheological behaviors of waterborne polyurethane (WPU)/starch aqueous dispersions during cure were investigated with a small-amplitude oscillatory shear flow experiment to evaluate their crosslinked structure and to predict their mechanical properties, for the first time. An abrupt increase in the elastic storage modulus (G′), the viscous loss modulus (G″), the complex dynamic viscosity (η*) and the loss tangent (tan δ) was observed during the curing process of the dispersions, as a result of the formation of a fractal polymer gel. The gel point (tgel) was determined from the intersection in tan δ vs curing time for different constant shear frequencies, where tan δ was frequency independent and all curves crossed over, indicating the validity of the Winter–Chambon criterion for the complex system. The values of the power law exponent (n) and the gel strength (Sg) at the gel point indicated that with an increase of starch content the crosslinked WPU/starch gels underwent a transition from weak fractal to strong elastic ones. Moreover, the WPU/starch composite sheets, obtained from the aqueous dispersions with relatively high Sg values, also exhibited the increased tensile strength (σb) and Young's modulus (E). Their structure–mechanical properties relationship and the phase transitions of dispersed starch–dual-phase continuity–starch matrix were revealed. This work confirmed that the rheological characters could be used to predict the mechanical properties of the WPU materials blended with natural polymer.  相似文献   

9.
Crosslink density (CLD) is an important characteristic for elastomeric polymer networks. The mechanical and viscoelastic properties of the elastomers are critically dependant on the CLD. Several methods have been adopted for its determination, but swelling and stress–strain methods continue to be more popular because of the convenience associated with these techniques. In this article, the determination of CLD of allophanate–urethane networks based on hydroxyl‐terminated polybutadiene and toluene diisocyanate with swelling and stress–strain methods is reported. The Flory–Rhener relationship was applied to calculate CLD from the swelling data. CLDs were also calculated from the initial slope of the stress–strain curve (Young's modulus), Mooney–Rivlin plots, equilibrium relaxation moduli, and dynamic mechanical properties. A comparison was drawn among the values obtained with the various methods. Although the CLD values obtained from Mooney–Rivlin plots were slightly lower than those obtained from swelling data, the values obtained with Young's modulus and storage modulus were considerably higher. The values obtained with swelling and equilibrium relaxation moduli data were very close to each other. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3129–3133, 2007  相似文献   

10.
The rheological properties of Bis-GMA dispersions filled with fumed silica were investigated to optimize the manufacturing process and mechanical properties by using a Rheometrics Mechanical Spectrometer (RMS). Steady and dynamic measurements on the RMS were carried out to obtain shear viscosity and dynamic mechanical properties. The effect of several factors on the rheological properties of fumed silica dispersions was also examined. The factors were a concentration of a silane coupling agent (γ-MPS), the methods of surface treatment of fillers, silica content, diluent concentration, shear rate, and operating temperatur. From these studies, it was observed that shear viscosity showed an asymptotic phenomenon at a higher concentration than a uniform multi-layer coverage concentration of γ-MPS. The silane coupling agent had a significant role in the reduction of tan δ, resulting from a decrease of loss modulus, while fillers decreased tan δ by increasing the storage modulus. In cases where the silica content and diluent concentration increased simultaneously, the Barcol hardness of Bis-GMA/silica composites was increased, but there was no change in the viscosity of dispersions and diametral tensile strength of those composites.  相似文献   

11.
Aqueous dispersions of a commercial esterquat‐type surfactant widely used in fabric softeners were rheologically characterized. While at 4 wt % esterquat concentration, a Newtonian response was observed; non‐Newtonian (Sisko) flow behavior and viscoelastic properties were found at 12 wt % and higher concentrations. The onset of nonlinear viscoelasticity in oscillatory shear provided interesting information on the strength of quiescent surfactant aggregates. Mechanical spectra corresponded to the plateau zone and the onset of the transition zone. The plateau modulus and the characteristic slopes of the relaxation spectra depended on the strength of the interactions among the aggregates. Start‐up at the inception of the shear experiments were carried out to obtain information on the time‐dependent shear behavior. Cryo‐SEM micrographs demonstrated the occurrence of a dispersion of vesicles embedded into a bilayer matrix.  相似文献   

12.
A new analytical method has been employed to determine values for the surface-energy properties, such as the solid/vapor surface energy and the equilibrium work of adhesion, of several polychloroprene compositions filled with organosilane-treated wollastonite fillers. The equilibrium work of adhesion, which represents the amount of energy stored in the interface formed between polymer and filler, has been used as a key material parameter to correlate changes in the mechanical and rheological properties of wollastonite-filled polychloroprene compositions. Experimental results show that some properties such as tear strength, tensile modulus, shear viscosity, and compression set, which depend on polymer-filler adhesion to varying degrees, increase as the equilibrium work of adhesion increases. On the other hand, properties such as tensile strength and ultimate elongation, which largely depend on the degree of mixing of filler particles and such defect structures as microvoids, decrease with the increase of the equilibrium work of adhesion. A power-law relationship between the tensile modulus and the equilibrium work of adhesion has also been established. This relationship can be used for selecting organosilane-treated fillers in order to achieve optimum properties.  相似文献   

13.
A new technique is presented which permits the quantitative characterization of the dynamic viscoelastic properties of polymer melts and liquids. A new sample holding system with oscillatory shear platen and modification of the amplifier and oscillating unit made it possible to measure rheological properties of the viscous liquids using the Rheovibron. The dynamic shear modulus, viscosity, and internal friction of acrylic dope, and silicone fluids are obtained by using the new procedure and developed mathematical expressions. This technique will be useful in studies on the rheological properties characterization of polymer melts and liquids in conjunction with process parameters.  相似文献   

14.
Maged A. Osman 《Polymer》2006,47(7):2357-2368
Composites of surface treated and non-treated colloidal calcium carbonate and high-density polyethylene with different filler loading were prepared. Their viscoelastic properties were studied by dynamic strain sweep and small-amplitude oscillatory shear, and compared to those of the corresponding composites of micron-sized calcite. The specific surface area of the filler enormously increases as the average particle diameter becomes smaller than 600 nm, leading to a strong tendency to agglomeration (soft flocks) and aggregation (hard clusters that need attrition to be disintegrated). In nanocomposites, more and stronger filler clusters are formed than in microcomposites due to the large contact area between the particles. The clusters have different shapes and maximum packing than the nearly spherical primary particles, thus enhance the moduli and viscosity of the composites. The obtained results indicate that the higher moduli and viscosity of the nanocomposites is not a direct consequence of the particle size but is due to the presence of more agglomerates and aggregates. Clusters that are local structures and do not represent a space-filling filler network enhance the moduli in the low frequency region more than at high frequencies and increase the storage more than the loss modulus. The presence of strong local structures in the nanocomposites leads to weak log moduli-log frequency dependence in the low frequency (terminal) region. Polymer adsorption on the particles' surface results in a transient filler-polymer network and slow dynamics of the bound polymer, which contribute to the moduli of the complex fluid. The sum of all these factors leads to gradual increase in moduli and to a shift of the crossover frequency to lower values. Above a certain filler volume fraction, the composite responds as a viscoelastic solid (storage modulus>loss modulus over the whole frequency range and both moduli are frequency independent in the terminal zone of the log-log plot).  相似文献   

15.
Jianye Liu 《Polymer》2006,47(20):7051-7059
The reaction of melt poly(ethylene-α-octene) (POE) initiated by dicumyl peroxide (DCP) was studied at elevated temperature in both oscillatory and transient shear flow fields. In oscillatory shear flow, the storage modulus evolution was monitored by parallel plate rheometer with certain oscillatory frequencies and different strains, which were chosen to represent different flow fields. Our results indicated that at low frequencies (0.1 and 0.4 Hz) the dominant reaction was coupling with small strain amplitudes within the linear viscoelastic regime. However, the degradation, which was caused by β-scission of tertiary carbon macromolecular radicals, also occurred when large strains were applied, which were out of the linear viscoelastic regime. The threshold strain of degradation was only 8% at 1.5 Hz, still within the linear viscoelastic regime. The mechanisms of how the frequency and strain affected the degradation were different. On the other hand, in transient shear flow the degradation could hardly take place when the shear rate was lower than the critical value of 0.0025 s−1. Moreover, the larger the shear rate, the more distinct was the degradation.  相似文献   

16.
Rheological characterization of two types of road bitumens, conventional and polymer‐modified, has been examined in the temperature range between 20°C and 140°C. Tests were carried out before and after ageing following a thin‐film oven test. Polymer‐modified bitumens exhibit non‐Newtonian behaviour up to the 120°C due to a complex secondary structure formed by added polymers. For conventional bitumens, Newtonian behaviour was observed above 60°C. Special attention was paid to measurements and to analysis of the dynamic data of oscillatory shear. The mechanical spectra in a wide frequency range have been obtained using the WLF time‐temperature superposition principle. The analysis of viscoelastic data clearly showed the differences between the two types of bitumen. Conventional bitumens were more sensitive to temperature and to the ageing effects. For polymer modified bitumens, the elastic contribution to viscoelastic response was more pronounced, and independent of temperature and ageing.  相似文献   

17.
This work is concerned with the change of viscoelastic properties of poly(vinyl chloride) (PVC) plastisol during heating. The system changes from a suspension of solid particles in a liquid medium to a swollen gel and further to a fused state as the temperature is raised. The Rheometrics mechanical spectrometer was used in the oscillatory mode at 0.1 Hz. The temperature of the sample was raised in a controlled manner to 195°C. During gelation, the viscosity increased rapidly about three decades. There was a similar increase of the elastic modulus. After reaching a maximum, both viscosity and elastic modulus decreased rapidly with the progress of fusion. The viscoelastic properties depended somewhat on the heating rate. At 170-195°C, it took a few minutes for the moduli to reach steady values. Continued heating, for several minutes at 195°C, did not change the moduli any further. The temperature range of the decomposition of a blowing agent in the plastisol foam formulation was determined. Over this temperature range, the viscoelastic properties change very rapidly. Quantitative estimates were made for the decrease of moduli during this period.  相似文献   

18.
Three dynamic methods to determine the interfacial tension between the thermotropic liquid crystalline polymer (TLCP) Vectra A900 and polyethersulfone were evaluated: (1) thread breakup, (2) fiber retraction and (3) dynamic shear rheometry. The thread breakup and retraction methods, were suitable for measuring the interfacial tension, provided that the shear thinning flow behavior of the TLCP was taken into account. The viscosity of the TLCP during breakup or retraction was estimated from steady-shear measurements at the observed overall rate of deformation during growth of capillary instabilities or during retraction. The calculation of the interfacial tension from breakup rates of TLCP threads was improved by accounting for transient flow behavior during distortion growth using a single-element Maxwell model. Determination of the interfacial tension by oscillatory shear measurements on TLCP/PES dispersions using the emulsion model of Palierne, was not applicable for this system. Only for dispersions containing low TLCP volume fractions (e.g. 9 vol%) was there reasonable agreement between the emulsion model and measurements. At higher volume fractions agreement was poor, possibly because of different dynamic flow behavior of the TLCP in the pure form and in blends. The interfacial tension values obtained from thread breakup and fiber retraction ranged from 4 to 6 mN/m, which demonstrate that in-situ determination of the interfacial tension is possible for blends containing TLCPs, despite their complex flow behavior.  相似文献   

19.
Understanding the complex mechanism of dispersion and intercalation of the clay tactoids can allow us to control the final morphology, homogeneity, and the macroscopic properties of clay nanocomposites. The objective of this work is a multiscale study of the dispersion state of PP/organoclay and PP‐g‐MA/organoclay composite. The microscopic investigation, WAXS diffractograms, rheological analysis, and mechanical properties were used to characterize the dispersion of organoclay in PP and PP‐g‐MA matrices during melt blending in two different shear rates. The morphological results show a system of aggregating intercalated clay particles which disperse by increasing mixing time with a strain‐controlled process and a very quick intercalation process in early mixing times for PP‐g‐MA/organoclay nanocomposite, while PP/organoclay samples only form microcomposites. The relative network modulus of these intercalated particles as a function of mixing time was obtained; and the tensile modulus of nanocomposite samples were compared with Halpin‐Tsai model prediction. POLYM. COMPOS., 2009. © 2009 Society of Plastics Engineers  相似文献   

20.
The rheological behavior of carboxymethyl starch aqueous systems has been studied under continuous and oscillatory shear conditions. The systems examined exhibited shear-dependent properties, typical of dispersions having a weak degree of particle aggregation. A transition in the rheological properties was observed with increasing concentration and/or decreasing temperature, as a consequence of formation of a three-dimensional continuous network in the disperse phase under rest conditions. The shear-dependent behavior changed from shear-thinning to plastic and a finite plateau appeared in the low frequency region of mechanical spectra. A rheological model was proposed for the correlation of both shear-thinning and plastic data, thus making possible an objective definition of the rheological transition. Oscillatory flow data confirmed the results obtained in continuous shear conditions, that is, the frequency dependence of the complex viscosity was almost parallel to the dependence of the steady shear viscosity on the rate of shear. Moreover, the high strain sensitivity of the viscoelastic quantities and their analysis in terms of relaxation spectra clearly indicated the moderate degree of connectivity of the structural network. © 1992 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号