首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
以内蒙蒙东褐煤为原料,在活性焦制备小试实验装置上,以水蒸气为活化介质,用正交实验方法考察了活化温度、活化时间和水蒸气流量对活性焦产品的碘吸附值、亚甲基蓝吸附值及收率的影响.结果表明,综合考虑活性焦的亚甲基蓝吸附值及收率的影响,最佳的活化条件为:活化温度800℃,活化时间为90min,水蒸气流量2g/min,在最佳工艺条件下所制得的活性焦中孔发达,中孔孔径在4.0nm附近分布比较集中.  相似文献   

2.
以碘吸附值、亚甲基蓝吸附值及活性炭得率为考察指标,选取对糠醛渣活性炭性质影响较大的浸渍比、磷酸质量分数、活化温度、保温时间4个因素进行L16(45)正交试验对磷酸活化法制备糠醛渣活性炭的工艺条件进行优化。由正交试验结果得到磷酸活化的最佳工艺条件为:磷酸质量分数60%,浸渍比2.5:1,活化温度550 ℃,保温1.5 h,此条件下制得的活性炭样品的碘吸附值为839.6 mg/g,亚甲基蓝吸附值为260.3 mg/g,得率为46.8%,比表面积为830.20 m2/g,孔容积为0.502 cm3/g,孔径集中在0.8~2.5 nm,具有丰富的中孔和微孔。  相似文献   

3.
《应用化工》2022,(10):2107-2110
以大型海藻铜藻为原料,采用H_3PO_4活化法制备活性炭,考察磷酸与藻粉的浸渍比、浸渍时间、活化温度、活化时间对得率、亚甲基蓝吸附值、碘吸附值的影响。H_3PO_4活化法制备活性炭最佳工艺如下:磷酸与藻粉的质量比为5∶1,浸渍时间100 min,活化温度550℃,活化时间75 min。最佳制备条件下制得的活性炭碘吸附值为528. 8 mg/g,亚甲基蓝吸附值为142. 5 mg/g,得率为43. 74%,比表面积为728. 73 m2/g。pH=2条件下,铜藻基活性炭对于Cr(Ⅵ)最大吸附量和吸附率可分别到达31. 5 mg/g和85%。  相似文献   

4.
以大型海藻铜藻为原料,采用H_3PO_4活化法制备活性炭,考察磷酸与藻粉的浸渍比、浸渍时间、活化温度、活化时间对得率、亚甲基蓝吸附值、碘吸附值的影响。H_3PO_4活化法制备活性炭最佳工艺如下:磷酸与藻粉的质量比为5∶1,浸渍时间100 min,活化温度550℃,活化时间75 min。最佳制备条件下制得的活性炭碘吸附值为528. 8 mg/g,亚甲基蓝吸附值为142. 5 mg/g,得率为43. 74%,比表面积为728. 73 m2/g。pH=2条件下,铜藻基活性炭对于Cr(Ⅵ)最大吸附量和吸附率可分别到达31. 5 mg/g和85%。  相似文献   

5.
以不同粒度的兰炭粉为原料,采用水蒸气活化法制备活性炭,研究了兰炭粉粒度对活性炭的收率、碘和亚甲基蓝吸附值、比表面积和孔结构的影响。结果表明:在相同的工艺条件下,随着原料粒度的增加,所制备活性炭的收率、碘和亚甲基蓝吸附值、比表面积、中孔率均呈现出先增加后下降的趋势。当原料粒度为0.85~1.00 mm时,活性炭的性能最好,其收率为62%,碘和亚甲基蓝吸附值分别为863.6 mg/g、264.6 mg/g,比表面积为818.52 m~2/g,中孔率为81.4%,活性炭具有多级孔的特征,但以中孔为主。  相似文献   

6.
根据GB/T 12496.10-1999测定被活性炭吸附过后的亚甲基蓝溶液的吸光度来检测活性炭的吸附性能,根据吸附结果得出最佳工艺条件:磷酸法为磷酸浓度60%,活化时间120 min,活化温度500℃,收率为46.25%,亚甲基蓝吸附量为:12.0 m L/0.1g。KOH/NaOH法制备活性炭最佳条件为炭化时间60 min,活化温度700℃,收率为11.66%,亚甲基蓝吸附量为11.5 m L/0.1g。结果表明磷酸法收率高,吸附效果理想,是油茶饼粕活性炭较好的制备方法。  相似文献   

7.
熊道陵  许光辉  张团结  陈金洲  陈超 《化工进展》2015,34(12):4280-4284
以油茶壳醇浸取后残渣为原料,以磷酸活化法制备活性炭,考察了浸渍比、磷酸质量分数和活化温度等对活性炭吸附性能及其得率的影响;活性炭的吸附性能由碘吸附值、亚甲基蓝吸附值表征。结果表明,在酸/炭浸渍比为3:1、磷酸质量分数70%、活化温度500℃时,活性炭的吸附性能最佳,其碘、亚甲基蓝吸附值和得率分别为1043.29mg/g、148.5mg/g和38.77%。采用物理吸附仪在77K下测定其N2吸附脱附等温线,利用BET法和BJH法计算比表面积和孔径分布,其比表面积为1626.45m2/g,平均孔径为4.7nm,总孔容为1.94cm3/g。同时采用FTIR和XRD分析了活性炭的表面官能团和微观结构。  相似文献   

8.
石莼基微/中孔复合结构活性炭的制备及性能   总被引:1,自引:0,他引:1  
以海洋海藻废弃物石莼为原料,通过热解预炭化,KOH活化制备活性炭。以碘吸附值和亚甲基蓝吸附值为吸附性能评价指标,探究了活化工艺对活性炭吸附性能的影响。结果表明,当KOH与石莼半焦质量比(碱炭比)为3.0∶1.0、活化时间为45 min、活化温度为800℃时,活性炭吸附性能最优,其碘吸附值和亚甲基蓝吸附值最大,分别为1824.19 mg/g、914.98 mg/g。FTIR测试表明,活性炭含有大量羟基等官能团。SEM测试表明,活性炭表面粗糙、存在大量孔结构。活性炭的BET比表面积为2616.3 m2/g,Langmuir比表面积高达4883.5 m2/g,平均孔径为2.73 nm。石莼基活性炭的孔结构为微/中孔复合结构,有作为储能、环保材料的潜质。  相似文献   

9.
山核桃壳活性炭制备及其吸附苯胺特性   总被引:8,自引:0,他引:8  
采用磷酸法制备山核桃壳活性炭,并以磷酸浓度、活化温度和活化时间为因素,亚甲基蓝脱色力、碘吸附值及得率为指标,进行正交设计优化,从热力学角度研究了山核桃壳活性炭对苯胺的吸附行为. 结果表明,磷酸法制备山核桃壳活性炭的优化工艺条件为:磷酸50%(w),活化温度300℃,活化时间45 min. 在此条件下,活性炭得率为53.21%,碘吸附值为804.36 mg/g,亚甲基蓝脱色力为102 mL/g. 在所研究的条件范围内,活性炭对苯胺的吸附能力随温度升高而增大,酸性条件有利于吸附. 吸附是自发吸热的物理吸附过程,遵循Freundlich吸附等温线.  相似文献   

10.
李素琼  王焕涵 《广州化工》2013,(19):41-45,73
采用机械力化学技术制备了良好吸附性能的活性炭,采用响应面法优化所制备活性炭的吸附性能。在单因素实验的基础上选取酸屑比、研磨时间、活化温度和磷酸浓度为影响因子,应用BBD(中心组合)进行4因素3水平的试验设计,以亚甲基蓝吸附值作为响应值,进行响应面分析。结果表明,机械力化学法制备磷酸活性炭的较优条件为:酸屑比为2.60,研磨时间为29 min,活化温度为390℃,磷酸浓度为22.5%,活性炭的亚甲基蓝吸附值达21.5 mg/g。  相似文献   

11.
以成型、烘焙处理后的玉米秸秆为原料,磷酸作为活化剂制备了玉米秸秆基活性炭,并对活性炭样品进行表征。同时以碘吸附值、亚甲基蓝吸附值和焦糖脱色率为指标测定其吸附性能,并对制备条件进行优化。实验结果表明:玉米秸秆制备活性炭的最佳工艺条件为浸渍比即m(55%H3PO4)∶m(玉米秸秆)为4∶1、活化温度400 ℃、活化时间100 min,此条件下活性炭的得率为47.78%,制得的活性炭具有良好的吸附性能,碘吸附值、亚甲基蓝吸附值及焦糖脱色率分别达到864 mg/g、210 mg/g和100%。活性炭比表面积可达1 105 m2/g,总孔容积为0.745 cm3/g,微孔孔容为0.287 cm3/g,中孔孔容为0.354 cm3/g,孔径分布集中于5 nm以内,约占73.56%,平均孔径为2.697 nm。FT-IR分析显示:在活化过程中磷酸与玉米秸秆发生交联作用,生成的活性炭损失了玉米秸秆的部分官能团。  相似文献   

12.
《应用化工》2022,(1):265-268
以毛发作为原料,磷酸为活化剂制备活性炭。采用碘值吸附、亚甲基蓝吸附、比表面积、孔径分布、Bohem滴定法、傅里叶变换红外光谱(FTIR)、X-射线光电子能谱(XPS)等手段对所得产品结构特征和性能进行了表征。结果表明,以85%磷酸为活化剂,600℃高温活化1.0 h的条件下所制备出的活性炭得率为26.20%,碘吸附值为767.08 mg/g,亚甲基蓝吸附值为198.00 mg/g,比表面积为338.01 m2/g,总孔容为0.21 cm2/g,总孔容为0.21 cm3/g,平均孔径为2.45 nm。经Bohem滴定法结果表明毛发活性炭表面同时含有酸性官能团和碱性官能团,其总酸度为7.569 mmol/g,总碱度为1.320 mmol/g。说明以毛发为原料可以制备具有一定吸附能力的两性活性炭,这与传统以碳氧官能团为主的活性炭有一定的区别。  相似文献   

13.
磷酸法水稻秆活性炭的制备   总被引:3,自引:1,他引:2  
以水稻秆为原料,采用磷酸活化法制备活性炭。研究了浸渍比、活化温度对活性炭样品吸附性能的影响,并对其微结构进行N2吸附等温线、热重-微商热重法(TG-DTG)、扫描电子显微镜(SEM)等表征。结果表明:水稻秆适合作为磷酸法活性炭的原料,吸附性能达到市售脱色活性炭的指标要求。在浸渍比为3∶1、活化温度 450 ℃、活化时间 60 min 的条件下,制得活性炭的亚甲基蓝吸附值 215 mg/g,碘吸附值 855 mg/g,A法焦糖脱色率 110 %,BET比表面积 967.72 m2/g,总孔容积 1.23 cm3/g,中孔率 84.6 %,平均孔径 4.6 nm。  相似文献   

14.
《应用化工》2021,(1):265-268
以毛发作为原料,磷酸为活化剂制备活性炭。采用碘值吸附、亚甲基蓝吸附、比表面积、孔径分布、Bohem滴定法、傅里叶变换红外光谱(FTIR)、X-射线光电子能谱(XPS)等手段对所得产品结构特征和性能进行了表征。结果表明,以85%磷酸为活化剂,600℃高温活化1.0 h的条件下所制备出的活性炭得率为26.20%,碘吸附值为767.08 mg/g,亚甲基蓝吸附值为198.00 mg/g,比表面积为338.01 m~2/g,总孔容为0.21 cm~3/g,平均孔径为2.45 nm。经Bohem滴定法结果表明毛发活性炭表面同时含有酸性官能团和碱性官能团,其总酸度为7.569 mmol/g,总碱度为1.320 mmol/g。说明以毛发为原料可以制备具有一定吸附能力的两性活性炭,这与传统以碳氧官能团为主的活性炭有一定的区别。  相似文献   

15.
以羊栖菜生物炭为原料,采用CO2物理活化法制备中孔活性炭。应用响应曲面中心组合法设计实验,考察了活化温度、活化时间及CO2流量对制备的活性炭吸附亚甲基蓝的影响及其交互作用,并采用N2吸附脱附对所制备的活性炭进行表征。结果表明,当活化温度为900℃,活化时间为30 min,CO2流量为1.8 L/min时,制备的活性炭的比表面积为1 329 m2/g,其对亚甲基蓝的吸附值高达235 mg/g,总孔体积为1.176 9 m L/g,中孔率为65%。  相似文献   

16.
两步法制备竹质活性炭   总被引:1,自引:0,他引:1  
结合磷酸活化法与氯化锌活化法化制备活性炭,在较低的活化温度下取得了良好的活性炭.活化总时间为60min,磷酸活化温度500 ℃与氯化锌活化温度400 ℃,浸渍率为150%的优化条件下制得的活性炭,其亚甲基蓝脱色力为19 mL,碘吸附值为861 mg/g,孔径集中在4.5 nm,并且比表面积高达1696 m2/g,大孔仅占0.381%.  相似文献   

17.
针对现有生物甲烷过程存在发酵速率低,副产物沼液和沼渣难以处理的问题,在对沼渣原料进行元素等分析基础上,用磷酸法活化沼渣获得活性炭,通过Raman、化学吸附仪、SEM和亚甲基蓝吸附分别对产物类型、孔结构、形貌和吸附值进行表征。结果表明,成功制备出比表面积为1 297 m~2/g,亚甲基蓝吸附值为476 mg/g的活性炭,为生物甲烷系统过程内部循环提供基础。  相似文献   

18.
低阶煤制备活性焦及其吸附性能研究   总被引:1,自引:0,他引:1  
为解决煤化工废水处理难题,提高活性焦吸附性能,以5种典型低阶煤为原料,通过回转炉炭化和活化工序制备活性焦,研究活化温度、活化蒸气量和活化时间对活性焦吸附性能的影响,分析了不同活性焦对废水的吸附能力。结果表明:以褐煤为原料制备活性焦时,最佳活化温度为800℃,活化时间为3 h,活化蒸气量为1050 g;长焰煤最佳活化温度为850℃,活化时间为4 h,活化蒸气量为1200 g。在最佳条件下,褐煤活性焦的吸附值为36.32 mg/g,比长焰煤活性焦吸附值高10%。5种原煤制备的活性焦的比表面积与吸附值没有明显相关性。活性焦的孔容积越大,吸附值越高,造成不同活性焦吸附值差别的主要孔径为2~5 nm和5~20 nm。  相似文献   

19.
采用H3PO4为活化剂、稻壳为原料,通过微波和马弗炉两种方法制备活性炭。详细考察了浸渍时间、料液比、活化剂浓度、微波功率或活化温度、以及活化时间的影响。结果显示,在磷酸浓度35%、料液质量比1∶4、浸渍时间3 h的条件下,采用400 W微波功率辐射8 min,制备的活性炭亚甲基蓝吸附值达到232 mg/g,若采用马弗炉600℃焙烧10 min,活性炭的亚甲基蓝吸附值达到226 mg/g。  相似文献   

20.
将褐煤与石莼的混合物进行低温共热解,再将三相产物中的半焦通过KOH活化制备高性能活性炭材料,并探究活化工艺对活性炭吸附性能的影响。结果表明:褐煤中掺混质量分数为30%的石莼,为共热解最佳掺混比,并可共热解得到半焦。最佳工艺条件为:碱炭质量比3.0∶1、活化时间60min、活化温度800℃,此条件下活性炭的碘吸附值和亚甲基蓝吸附值均达到最大值,分别为1 701.64mg/g和699.61mg/g,吸附性能最优。活性炭的BET比表面积高达1 519.318 3m~2/g,微孔比表面积为1 240.491 3m~2/g,微孔结构发达,微孔孔径主要集中在0.4nm~1.2nm。FTIR检测结果表明,活性炭的表面官能团减少,—OH含量较高。SEM分析结果表明,活性炭表面十分粗糙,存在大量孔结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号