首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
壳聚糖因其具有良好的理化性质和生物学活性,如生物相容性、可降解性、抑菌性、止血性及促进伤口愈合性等,在医用伤口敷料领域具有广泛的应用,本文针对壳聚糖的理化性质、理想敷料的具体需求,系统分析了不同壳聚糖敷料,如纤维、膜、凝胶、海绵的具体应用形态,回顾了近几年壳聚糖作为医用敷料的发展方向的同时,对未来的研究重点进行了展望。  相似文献   

2.
本文以海藻酸钠和聚乙烯醇为原料,以磷酸锆钠银为抗菌剂,通过静电纺丝工艺制备载银海藻酸钠/聚乙烯醇复合纳米纤维膜敷料,同时,对制备的载银海藻酸钠/聚乙烯醇复合纳米纤维膜敷料的吸液完整性、力学性能、抗菌性、细胞毒性进行研究。结果显示,载银海藻酸钠/聚乙烯醇复合纳米纤维膜敷料具有很好的力学性能以及抗菌效果,且细胞毒性较低,对大肠杆菌的抑菌率为99.98%,证明适合用作医用敷料。  相似文献   

3.
论文采用溶液喷射纺丝技术纺制了CS/PLA/PEG纳米纤维,该纤维表面光滑、呈现三维卷曲形态,平均直径为341~376nm。对其进行戊二醛(GA)水蒸汽交联,增强了其在水中的稳定性,并具有快速的溶胀吸湿性、高的保水性和良好透气性,应用于创伤敷料有利于吸收多余的伤口渗出液,保持伤口湿润的愈合环境和空气交换。同时大肠杆菌实验显示了该纤维膜具有良好的抑菌性能。该敷料兼具纳米纤维和水凝胶的特性,是一种理想的生物医用敷料。  相似文献   

4.
专利文摘     
正一种用于慢性伤口愈合的微电流弹性敷料及其制备方法(CN113304303A)南通大学日前公开了一种用于慢性伤口愈合的微电流弹性敷料及其制备方法,以聚偏氟乙烯、水性聚氨酯和醋酸锌为原料,采用静电纺丝技术制备出核壳结构的复合纳米纤维膜,再经过水热反应,使复合纳米纤维膜表面负载致密高取向的氧化锌纳米棒,得到促进慢性伤口愈合、具有高压电效应和抗菌性能的微电流弹性敷料。  相似文献   

5.
《弹性体》2017,(6)
聚硅氧烷弹性体是一类具有良好弹性,柔软且生物相容性好,具有一定水汽透过性的高分子材料,在伤口敷料领域有诸多应用。综述了多种基于聚硅氧烷弹性体的伤口敷料的制备方法及其在多种伤口护理(如:压疮、增生性瘢痕、急性创伤和烧伤)中的应用进展。  相似文献   

6.
皮肤是覆盖人体表面并直接接触外部环境的一个非常重要的器官,皮肤伤口的修复是一个复杂而有序的过程。寻求促进创伤修复、具有优良性能的伤口敷料是目前的研究热点。水凝胶由于含水量高、生物相容性好、吸收渗出物、易于去除、提供湿润环境,在伤口敷料领域得到广泛的研究和应用。介绍了水凝胶的制备方法,总结了抗菌、止血、消炎、促组织再生等功能化水凝胶伤口敷料的研究进展,展望了水凝胶伤口敷料未来的发展方向。  相似文献   

7.
采用静电纺丝技术制备了聚己内酯(PCL)与胶原/丝素(COL/SF)质量比为0∶100、10∶90、20∶80、30∶70、40∶60、50∶50的复合微纳米纤维膜,通过扫描电子显微镜、力学性能测试和接触角测试等对复合纤维膜的理化性能进行表征,并将HepG_2细胞种植在复合纤维膜上检测其细胞生物相容性。结果表明:PCL/COL/SF复合微纳米纤维膜纤维形貌良好,纤维直径和亲水性随PCL含量的增加而减小;PCL/COL/SF复合纤维膜具有较好的力学性能。PCL与COL/SF质量比为30∶70时,复合纤维膜亲水性良好,强度和柔性最佳,并且HepG_2细胞在复合纤维膜表面黏附生长良好,细胞增殖情况明显,表明PCL与COL/SF质量比为30∶70的复合纤维膜有望成为一种良好的载体,可应用于体外肝细胞培养。  相似文献   

8.
甲壳素与甲壳胺纤维4.纤维在生物医药领域中的应用   总被引:3,自引:2,他引:1  
秦益民 《合成纤维》2004,33(5):34-35
甲壳素和甲壳胺是广泛存在于动物和植物中的天然高分子材料。近年来,这两个高分子的生物相容性、生物可降解性、对伤口愈合的促进性能和其它一些优异性能在生物医药领域引起了重视。甲壳素和甲壳胺纤维既具有天然高分子的生物活性,又有纤维材料的特性,在手术缝合线、医用敷料、人工皮肤、硬组织修复材料、人工肾膜、抗菌材料、保健内衣面料、药物缓释等材料中得到了广泛的应用。  相似文献   

9.
针对湿布型面膜成分复杂、活性成分利用率较低的痛点,本文创新性地研发出一款全固态纳米纤维面膜。并简要介绍了全固态纳米纤维面膜的形成机制、微观形貌及结构特征,将高分子聚合物与功效成分直接纺成纳米纤维丝,并在接收基布上纺成一张仅微米厚的纳米纤维膜。与普通湿布型面膜相比,纳米纤维面膜在减少功效成分添加量的同时还能达到更好的作用效果,例如,具有贴敷性好、保水性强、持水性优异、负载率高、生物相容性好等优点。最后提出了全固态纳米纤维面膜材料目前存在的难点、发展方向和应用前景。  相似文献   

10.
作为天然高分子之一的明胶无毒无味,具有优异的生物相容性及生物可降解性。利用静电纺丝技术制备的明胶纳米纤维膜材料能最大程度地仿生天然细胞外基质的胶原蛋白结构,因此在生物医用材料领域具有广泛的应用,引起了国内外学者的普遍关注。本文介绍了明胶静电纺丝装置、工艺的研究进展,同时总结了明胶静电纺丝纳米纤维膜材料在生物医疗领域内的应用研究情况,并展望了明胶静电纺丝工艺与明胶纳米纤维膜材料的发展趋势和研究方向。  相似文献   

11.
Tissue engineering has emerged as an alternative treatment to traditional grafts for skin wound healing. Three-dimensional nanofibers have been used extensively for this purpose due to their excellent biomedical-related properties. In this study, high porous 3D poly lactic acid nanofibrous scaffolds (PLA-S) were prepared by wet-electrospinning technique and seeded with rat bone-marrow stem cells (BMSCs) to characterize the biocompatibility and therapeutic efficacy of these fibers on the treating full-thickness dermal wounds. The results of in vitro andin vivo studies indicate that the 3D fibrous PLA-S can be a potential wound dressing for wound repair, particularly when seeded with BMSCs.  相似文献   

12.
Abstract

Wound dressings are very useful materials for accelerating the wound healing process. In this study, nanofibrous wound dressings were produced from blending solution of Poly-lactic acid(PLA)/Chitosan(C)/Starch(S)/Zinc oxide(Z) by electrospinning method. Morphology, chemical interaction, mechanical, water uptake and weight loss tests were performed on each samples. Moreover, the biocompatibility of primary dermal fibroblast (ATCC, PCS-201-012) on prepared wound dressings was investigated with MTT assays in vitro, and the samples were found suitable for cell viability and proliferation. These results suggest that produced nanofibrous wound dressings can be promising candidate for wound dressing applications.  相似文献   

13.
Chitosan, a naturally occurring polysaccharide with abundant resources, has been extensively exploited for various biomedical applications, typically as wound dressings owing to its unique biocompatibility, good biodegradability and excellent antibacterial properties. In this work, composite nanofibrous membranes of chitosan (CS) and silk fibroin (SF) were successfully fabricated by electrospinning. The morphology of electrospun blend nanofibers was observed by scanning electron microscopy (SEM) and the fiber diameters decreased with the increasing percentage of chitosan. Further, the mechanical test illustrated that the addition of silk fibroin enhanced the mechanical properties of CS/SF nanofibers. The antibacterial activities against Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive) were evaluated by the turbidity measurement method; and results suggest that the antibacterial effect of composite nanofibers varied on the type of bacteria. Furthermore, the biocompatibility of murine fibroblast on as-prepared nanofibrous membranes was investigated by hematoxylin and eosin (H&E) staining and MTT assays in vitro, and the membranes were found to promote the cell attachment and proliferation. These results suggest that as-prepared chitosan/silk fibroin (CS/SF) composite nanofibrous membranes could be a promising candidate for wound healing applications.  相似文献   

14.
A novel bilayer nanofibrous wound dressing, with enhanced mechanical properties is successfully fabricated. This membrane, consisted of polyvinylidenefluoride (PVDF) nanofibers for providing tensile strength and polyhydroxybutyrate/chitosan (PHB/CTS) nanofibers loaded with gentamicin with ability of controlled drug delivery, is a great choice for post-surgical ulcers. Mechanical properties showed dramatically improvement of tensile strength by addition of PVDF layer. Gentamycin release represented both an immediate and a sustained release of about 24?h and 1 week, respectively and release increment with increase of CTS ratio. Results also revealed that drug release in structures follow first order kinetic and Fickian release mechanism.  相似文献   

15.
Antimicrobial nanofibers of poly(?‐caprolactone) (PCL) were prepared by electrospinning of a PCL solution with small amounts of silver‐loaded zirconium phosphate nanoparticles (nanoAgZ) for potential use in wound dressing applications. The electrospun nanoAgZ‐containing PCL nanofibers were characterized using field emission scanning electron microscopy, energy dispersive X‐ray spectrum (EDX), X‐ray diffraction analysis (XRD), antimicrobial tests, and biocompatibility tests. The SEM, EDX, and XRD investigations of the electrospun fibers confirmed that silver‐containing nanoparticles were incorporated and well dispersed in smooth and beadless PCL nanofibers. The results of the antimicrobial tests showed that these fibers have maintained the strong killing abilities of Ag+ existed in the nanoAgZ against the tested bacteria strains and discoloration has not been observed for the nanofibers. To test the biocompatibility of nanofibers as potential wound dressings, primary human dermal fibroblasts (HDFs) were cultured on the nanofibrous mats. The cultured cells were evaluated in terms of cell proliferation and morphology. The results indicated that the cells attached and proliferated as continuous layers on the nanoAgZ‐containing nanofibers and maintained the healthy morphology of HDFs. The earlier results suggested that nanoAgZ‐containing fibers may be expected to be a novel material for potential wound dressing applications because of the significant bacteriostatic activities and good biocompatibility. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

16.
Perforation of eardrum or tympanic membrane (TM) is a common clinical condition, which occurs due to infection or injury of the eardrum, and could results in varying degrees of conductive hearing loss among all ages. In this study, the authors report the combinatorial approach of designing mechanically-tunable and vascular supportive nanofibrous membranes by 3D printing-assisted electrospinning (e-spin) using polycaprolactone (PCL) and gelatin with different mass ratios suitable to repair a perforated eardrum. The physicochemical, mechanical, and biological properties of the membranes were characterized. The results show that the membrane has nanofibrous morphology with fibers are of varying size (400–600 nm in diameter) depending on processing conditions. The wettability and mechanical properties of the membrane can be tuned by regulating the gelatin content. Moreover, a biomimetic repair strategy inspired by chicken eggshell membrane, often used in wound dressings, was also presented for study and results show that the suture retention strength of the fabricated membrane can meet clinical translational requirements to promote TM healing. The vascular cell responsiveness of PCL/gelatin nanofibrous membrane was evaluated using human umbilical vein endothelial cells (HUVECs) and the results showed satisfactory biocompatibility, vascular cell responsiveness, and cell proliferation. The findings of this study demonstrate that the combinatorically engineered PCL/gelatin nanofibrous membrane has great potential for repairing perforated eardrum.  相似文献   

17.
In this article, we present the drug‐release rate, water uptake, water permeability, morphology, and mechanical properties of a series of active wound dressing nanofibrous mats prepared via an electrospinning process of poly(lactic acid) (PLA), poly(?‐caprolactone) (PCL), and their (50/50) blends loaded with different doses of tetracycline hydrochloride antibiotic. The performance of these active wound dressings in terms of a sustained and suitable drug‐release rate, adequate water uptake and water permeability, and antibacterial activities were compared with those of a commercial wound dressing (Comfeel Plus). The results show that the dressings made from PCL and PLA/PCL blends showed better performance compared with the commercial wound dressing sample as far as these properties were concerned. The improved performance could be explained on the basis of the nanofibrous structure of the mats and the hydrophilicity of PCL and PLA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
A transparent cellulose-based functional hydrogel dressing is prepared by hydrogen bonding interaction and encapsulation technique, which can uniformly disperse hydrophobic drugs and has the advantages of simple preparation, good biocompatibility, fast self-healing ability, and slow drug release. Menthol, which is insoluble and irritating, is used as a model drug, encapsulated by ethylenediamine-modified cyclodextrin, and then loaded onto a hydrogel dressing. The introduction of modified cyclodextrin not only improves the stability and solubility of menthol, but also makes the hydrophobic menthol uniformly dispersed in hydrophilic hydrogel dressing, and the large amount of hydrogen bonding can enable rapid hydrogel generation. In addition, the microstructure, swelling, biocompatibility and drug loading properties of the hydrogel are investigated, and the results show that the hydrogel has good prospects for application in the field of wound dressings.  相似文献   

19.
Chitosan (CS) has biocompatibility and biodegradability, but the bulk CS hydrogel/membranes with its poor strength and limited antibacterial property could not satisfy the practical application. Here green dissolving/regeneration and in situ reduction strategy was combined to construct high strength antibacterial CS membranes. First nanofibrous CS hydrogels were constructed through dissolving CS in LiOH/KOH/urea aqueous system via freezing–thawing process followed regeneration. Then, Ag NPs were immobilized along CS nanofibers through in situ reductions of Ag + by the NH2 group of CS. The obtained NCM-Ag composite dry membranes are easy for storing and can quick switch to nanofibrous hydrogels as absorbing water. Size of Ag NPs can be controlled to very small until 2 nm by concentration and limited space network. Fourier transform infrared spectroscopy and X-ray photoelectron spectrometer indicated the forceful grasp ability of CS nanofibers to Ag NPs for a stable binding, mechanical property was enhanced over 100Mpa as the nanofibrous structure and chain linked by Ag coordination. The NCM-Ag membranes had excellent antibacterial activities against both Staphylococcus aureus and Escherichia coli. Moreover, such nanofibrous CS membrane exhibited good adhesive ability to tissues. Combining all these properties, NCM-Ag membranes would be potential as antibacterial adhesion barrier to accelerate wound healing.  相似文献   

20.

Medicinal plants such as Calendula officinalis (C. officinalis) are commonly used for skin wounds’ treatment. On the other hand, gum arabic (GA) has a lot of potential for use in wound healing because of its unique physio-chemical properties. Wound healing activity of gum arabic (GA) and Calendula officinalis (C. officinalis) along with good mechanical properties of poly (ε-caprolactone) (PCL) can produce a suitable nanofibrous scaffold for skin tissue engineering as well as wound dressing application. In this study, PCL/C. officinalis/GA nanofibrous scaffolds with diameter distribution in the range of 85–290 nm were prepared via electrospinning. Characteristics of the nanofibrous scaffolds, i.e., morphology, scaffold compounds, porosity, mechanical and antibacterial properties, hydrophilicity and degradability in phosphate buffer saline (PBS) were investigated. Cell viability and proliferation of scaffolds were evaluated by MTT [3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay. Results indicated that hydrophilicity of the PCL/C. officinalis/GA scaffolds was higher than the PCL scaffold. The tensile strength and elongation of the PCL/C. officinalis/GA scaffolds were in the range of 2.13–4.41 MPa and 26.37–74.37%, respectively, which are very suitable for skin tissue engineering. The porosity of the scaffolds was higher than 60% and was appropriate for the proliferation of fibroblast cells. The nanocomposite scaffold also showed suitable degradability and antimicrobial activity. Moreover, cell culture indicated that GA and C. officinalis promoted cell attachment and proliferation. It can be concluded that the nanofibrous calendula-loaded PCL/GA scaffolds are well suited for regenerating skin.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号