首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphology and miscibility of commercial poly(lactide) (PLA)/poly(β‐hydroxybutyrate) (PHB, from 5 to 20 wt %) blends prepared by melt extrusion method, were investigated using differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) observations. The results show that for all the studied blend contents, PLA/PHB blends are immiscible. The effects of PHB and talc on the nonisothermal cold crystallization kinetics of PLA were examined using a differential scanning calorimetry (DSC) at different heating rates. PHB acted as a nucleating agent on PLA and the addition of talc to the blend yielded further improvement, since significant increase in the enthalpy peak was observed for samples containing 10 wt % PHB and talc (from 0.5 to 5 phr). The crystallization kinetics were then examined using the Avrami–Jeziorny and Liu–Mo approach. The simultaneous presence of PHB and talc induced a decrease of the crystallization half time. The evolution of activation energies determined with Kissinger's equation suggests that blending with PHB and incorporating talc promote nonisothermal cold crystallization of PLA. The synergistic nucleating effect of PHB and talc was also observed on isothermal crystallization of PLA from the melt. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
Atactic poly(methylmethacrylate), aPMMA, was blended with poly(3‐D(−)hydroxybutyrate), PHB, up to a maximum composition of 25% of polyester, at 190°C in a Brabender‐like apparatus. The resulting blends quenched from the melt to room temperature were completely amorphous, and exhibited a single glass transition using DSC and DMTA, indicating miscibility of the components for this time–temperature history. Tensile experiments showed that at room temperature the 10/90 and 20/80 PHB/aPMMA blends exhibited higher values of strain at break, and slight decreases of the modulus and stress at break compared to neat aPMMA. The tensile energy at break was almost twice that of neat aPMMA. Tensile tests were also performed at 80°C, at which point the 25/75 and 20/80 PHB/aPMMA blends are above Tg, while the 10/90 and neat aPMMA are below Tg. The stress–strain curves obtained were functions of the physical state of the amorphous phase, and also depended on the difference between the test temperatures and Tg. In particular, comparing the neat aPMMA and the blends, decreases of the modulus and stress at break and a respectable increase in the strain at break were observed in the latter. Finally, the results were commented considering the thermal degradation of PHB in the melt during the blend preparation. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 746–753, 2000  相似文献   

3.
In order to increase the miscibility in the blend of poly(β-hydroxybutyrate) [PHB] and poly(ε-caprolactone) [PCL], PHB/PCL copolyesters were used as compatibilizers. These PHB/PCL copolyesters were synthesized by transesterification in solution phase. The melting point [Tm] depression, which was not observed in PHB/PCL blend without compatibilizer, was observed when PHB/PCL copolyesters as compatibilizers were added to the PHB/PCL blend system. As the amount of compatibilizer added to the blend increased, the crystallization temperature [Tc] of PCL in the blend increased and Tc of PHB in the blend decreased. The difference in Tc between PHB and PCL was gradually reduced. When the sequence length of PHB block and PCL block in the PHB/PCL copolyester increased, the miscibility of the blend increased. This is evidenced by the depression in the Tm of PHB and PCL in the blend and by the decrease in the difference of Tc between PHB and PCL. From the polarizing optical micrographs, the phase separation in PHB/PCL blend was observed. However, in the presence of PHB/PCL copolyester, the spherulite of PHB grows in equilibrium with one phase melt. Received: 27 July 1998/Revised version: 12 October 1998/Accepted: 4 November 1998  相似文献   

4.
Biosourced poly(lactic acid) (PLA) blends with different content of poly(ethylene oxide‐b‐amide‐12) (PEBA) were prepared by melt compounding. The miscibility, phase structure, crystallization behavior, mechanical properties, and toughening mechanism were investigated. The blend was an immiscible system with the PEBA domains evenly dispersed in the PLA matrix. The PEBA component suppressed the nonisothermal melt crystallization of PLA. With the addition of PEBA, marked improvement in toughness of PLA was achieved. The maximum for elongation at break and impact strength of the blend reached the level of 346% and 60.5 kJ/m2, respectively. The phase morphology evolution in the PLA/PEBA blends after tensile and impact tests was investigated, and the corresponding toughening mechanism was discussed. It was found that the PLA matrix demonstrates obvious shear yielding in the blend during the tensile and impact tests, which induced energy dissipation and therefore lead to improvement in toughness of the PLA/PEBA blends. POLYM. COMPOS., 2013. © 2012 Society of Plastics Engineers  相似文献   

5.
Polymer blends have received particular interest in the past several decades in both industrial and academic research. An initial survey of miscible polymer pairs (1) (1968) revealed 12 combinations. A later survey (2) (1979) noted approximately 180 miscible pairs. Today possibly over 500 miscible combinations have been noted in the open and patent literature (3). However, the vast majority of possible polymer blend combinations are not miscible (thus phase separated). A significant number of diverse polymer structures have been shown to exhibit miscibility with PVC. Several of these blends have been studied in detail and have shown specific interactions primarily involving the α-hydrogen and PVC (considered the proton donor in proton donor-proton acceptor hydrogen bonding type interactions). The blend of poly(?-caprolactone) with PVC illustrates this interaction and has been reported in many published papers. While polymer miscibility in PVC blends offers significant academic interest, industrial utility is also of considerable importance. The addition of low Tg, miscible polymers to PVC offers permanent plasticization. The addition of high Tg, miscible polymers to PVC yields the desired heat distortion temperature enhancement of rigid PVC. A specific example of permanent plasticization involves nitrile rubber blends which have been commercial since the early 1940's. This presentation will review the growing number of polymers noted to be miscible with PVC. The importance of specific interactions will be discussed.  相似文献   

6.
We have studied blends of a polymer liquid crystal (PLC) with poly(cyclohexylethyl methacrylate) (PCHEMA) or poly(cyclohexylpropyl methacrylate) (PCHPMA). The PLC is PET/0.6PHB where PET = poly(ethylene terephthalate), PHB = p-hydroxybenzoic acid and 0.6 is the mole fraction of the latter in the copolymer. The microstructure was studied by scanning electron microscopy (SEM). PCHEMA + PLC (20 wt% of the latter, blend E) has a fine texture with LC islands evenly distributed in the matrix and good adhesion between the phases resulting from their partial miscibility. The PCHPMA + PLC (20 wt% of the latter, blend P) shows only limited compatibility. The SEM results are confirmed by values of the glass transition temperatures Tg determined via thermal mechanical analysis. The Tg value of the blend E is shifted towards the Tg of PLC; Tg of blend P is practically equal to that of PCHPMA. The linear isobaric expansivity αL values for both blends are lower than the respective values for pure PCHPMA and PCHEMA. Thermal stabilities of the blends determined by thermogravimetry are also better than those of pure polymethacrylates. The temperature of 50% weight degradation for blend E is higher than that for pure PCHEMA by more than 60 K Copyright © 2004 Society of Chemical Industry  相似文献   

7.
Poly (lactic acid) (PLA) is an important biodegradable plastic with unique properties. However, its widespread application is hindered by its low miscibility and suboptimal degradation properties. To overcome these limitations, we investigated the mechanical, thermal, and degradation properties of PLA and poly (butylene sebacate-co-terephthalate) (PBSeT) blends in the presence of poly (ethylene oxide) (PEO). Specifically, this study aimed to identify the effects of PEO as a compatibilizer and hydrolysis accelerator in PLA/PBSeT blends. PLA (80%) and PBSeT (20%) were melt blended with various PEO contents (2–10 phr), and their mechanical, thermal, and hydrolytic properties were analyzed. All PEO-treated blends exhibited a higher elongation at break than that of the control sample, and the tensile strength was slightly reduced. In the PEO 10% sample, the elongation at break increased to 800% of that of the control sample. Differential scanning chromatography (DSC) analysis confirmed that when PEO was added to the PLA/PBSeT blends, the two glass transition temperatures (Tg) narrowed, resulting in improved miscibility of PLA and PBSeT. In addition, the hydrolytic degradation of the PLA/PBSeT/PEO blend accelerated as the PEO content increased. It was confirmed that PEO can act as a compatibilizer and hydrolysis-accelerating agent for PLA/PBSeT blends.  相似文献   

8.
The miscibility and melting behavior of binary crystalline blends of poly(ethylene terephthalate) (PET)/poly(trimethylene terephthalate) (PTT) have been investigated with differential scanning calorimetry and scanning electron microscope. The blends exhibit a single composition‐dependent glass transition temperature (Tg) and the measured Tg fit well with the predicted Tg value by the Fox equation and Gordon‐Taylor equation. In addition to that, a single composition‐dependent cold crystallization temperature (Tcc) value can be observed and it decreases nearly linearly with the low Tg component, PTT, which can also be taken as a valid supportive evidence for miscibility. The SEM graphs showed complete homogeneity in the fractured surfaces of the quenched PET/PTT blends, which provided morphology evidence of a total miscibility of PET/PTT blend in amorphous state at all compositions. The polymer–polymer interaction parameter, χ12, calculated from equilibrium melting temperature depression of the PET component was ?0.1634, revealing miscibility of PET/PTT blends in the melting state. The melting crystallization temperature (Tmc) of the blends decreased with an increase of the minor component and the 50/50 sample showed the lowest Tmc value, which is also related to its miscible nature in the melting state. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Di(isononyl) cyclohexane‐1,2‐dicarboxylate (DINCH) was used as a new plasticizer for poly(lactic acid) (PLA), and the effects of DINCH and tributyl citrate ester (TBC) on the morphology, mechanical and thermal properties, and durability of PLA were compared. DINCH has limited compatibility with PLA, leading to PLA/DINCH blends with phase separation in which DINCH forms spherical dispersed phase. TBC is compatible with PLA and evenly distributed in PLA. Plasticized PLA with 10 and 20 phr DINCH have a constant glass transition temperature (Tg) of 50°C and are stiff materials with high elongation at break and impact strength. TBC could significantly decrease the Tg and increase the crystallinity of PLA, and PLA/TBC (100/20) blend is a soft material with a Tg of 24°C. The durability of plasticized PLA was characterized by weight loss measurement under water immersion, mechanical properties, and thermal analysis. The results reveal that PLA/DINCH blends have better water resistance and aging resistance properties than PLA/TBC blends, which is attributed to the relatively high hydrophobicity of DINCH and high Tg of PLA/DINCH blends. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

10.
E. Piorkowska  R. Masirek 《Polymer》2006,47(20):7178-7188
Plasticization of semicrystalline poly(l-lactide) (PLA) with a new plasticizer - poly(propylene glycol) (PPG) is described. PLA was plasticized with PPG with nominal Mw of 425 g/mol (PPG4) and 1000 g/mol (PPG1) and crystallized. The plasticization decreased Tg, which was reflected in a lower yield stress and improved elongation at break. The crystallization in the blends was accompanied by a phase separation facilitated by an increase of plasticizer concentration in the amorphous phase and by annealing of blends at crystallization temperature. The ultimate properties of the blends with high plasticizer contents correlated with the acceleration of spherulite growth rate that reflected accumulation of plasticizer in front of growing spherulites causing weakness of interspherulitic boundaries. In PLA/PPG1 blends the phase separation was the most intense leading to the formation of PPG1 droplets, which facilitated plastic deformation of the blends that enabled to achieve the elongation at break of about 90-100% for 10 and 12.5 wt% PPG1 content in spite of relatively high Tg of PLA rich phase of the respective blends, 46.1-47.6 °C. Poly(ethylene glycol) (PEG), long known as a plasticizer for PLA, with nominal Mw of 600 g/mol, was also used to plasticize PLA for comparison.  相似文献   

11.
Four blends of poly(hydroxybutyrate) (PHB) and poly(butylene succinate) (PBSU), both biodegradable semicrystalline polyesters, were prepared with the ratio of PHB/PBSU ranging from 80/20 to 20/80 by co-dissolving the two polyesters in N,N-dimethylformamide and casting the mixture. Differential scanning calorimetry (DSC) and optical microscopy (OM) were used to probe the miscibility of PHB/PBSU blends. Experimental results indicated that PHB showed some limited miscibility with PBSU for PHB/PBSU 20/80 blend as evidenced by the small change in the glass transition temperature and the depression of the equilibrium melting point temperature of the high melting point component PHB. However, PHB showed immiscibility with PBSU for the other three blends as shown by the existence of unchanged composition independent glass transition temperature and the biphasic melt. Nonisothermal crystallization of PHB/PBSU blends was investigated by DSC using various cooling rates from 2.5 to 10 °C/min. During the nonisothermal crystallization, despite the cooling rates used two crystallization peak temperatures were found for PHB/PBSU 40/60 and 60/40 blends, corresponding to the crystallization of PHB and PBSU, respectively, whereas only one crystallization peak temperature was observed for PHB/PBSU 80/20 and 20/80 blends. However, it was found that after the nonisothermal crystallization the crystals of PHB and PBSU actually co-existed in PHB/PBSU 80/20 and 20/80 blends from the two melting endotherms observed in the subsequent DSC melting traces, corresponding to the melting of PHB and PBSU crystals, respectively. The subsequent melting behavior was also studied after the nonisothermal crystallization. In some cases, double melting behavior was found for both PHB and PBSU, which was influenced by the cooling rates used and the blend composition.  相似文献   

12.
The present research aims to improve the compatibility between relatively hydrophobic poly(lactic acid) (PLA) and hydrophilic thermoplastic starch (TPS) and the properties of the PLA/TPS blends by replacing TPS from native cassava starch (TPSN) with TPS from acetylated starch (TPSA). The effects of the degree of acetylation (DA) of acetylated starch, that is, 0.021, 0.031, and 0.074, on the morphological characteristics and properties of PLA/TPS blend are investigated. The melt blends of PLA and TPS with a weight proportion of PLA:TPS of 50:50 are fabricated and then blown into films. Scanning electron microscopy confirms the dispersion of TPS phase in the PLA matrix. Better dispersion and smaller size of the TPS phase are observed for the PLA/TPSA blend films with low DA of acetylated starch, resulting in improved tensile and barrier properties and increased storage modulus, thermal stability, and Tg, Tcc, and Tm of PLA. Elongation at break of the PLA/TPSA blend increases up to 57%, whereas its water vapor permeability and oxygen permeability decrease about 15%. The obtained PLA/TPSA blend films have the potential to be applied as biodegradable flexible packaging.  相似文献   

13.
Blending poly(ethylene glycol) (PEG) with poly(lactide) (PLA) decreases the Tg and improves the mechanical properties. The blends have lower modulus and increased fracture strain compared to PLA. However, the blends become increasingly rigid over time at ambient conditions. Previously, it was demonstrated that a PLA of lower stereoregularity was miscible with up to 30 wt% PEG. Aging was due to slow crystallization of PEG from the homogeneous amorphous blend. Crystallization of PEG depleted the amorphous phase of PEG and gradually increased the Tg until aging essentially ceased when Tg of the amorphous phase reached the aging temperature. In the present study, this aging mechanism was tested with a crystallizable PLA of higher stereoregularity. Changes in thermal transitions, solid state structure, and mechanical properties were examined over time. Blends with up to 20 wt% PEG were miscible. Blends with 30 wt% PEG could be quenched from the melt to the homogenous amorphous glass. However, this composition phase separated at ambient temperature with little or no crystallization. Changes in mechanical properties during phase separation reflected increasing rigidity of the continuous PLA-rich phase as it became richer in PLA. Construction of a phase diagram for blends of higher stereoregular PLA with PEG was attempted.  相似文献   

14.
Crystallization, melting, hydrolytic degradation, and mechanical properties of poly(trimentylene terephthalate)/poly(lactic acid) (PTT/PLA) blends have been investigated. The blends show a single and composition-dependent glass-transition temperature (T g) over the entire composition range, implying that these blends are fully miscible in the amorphous state. The observed T g is found to increase with increasing PLA content and fitted well with the Gordon–Taylor equation, with the fitting parameter k being 0.91. The cold-crystallization peak temperature increases, while the melt-crystallization peak decreases with increasing the PLA content. Both the pure PTT and PTT/PLA blends cannot accomplish the crystallization during the cooling procedure and the recrystallization occurs again on the second heating. Therefore, on the thermogram recorded, there is exothermal peak followed by endothermal peak with a shoulder. However, to pure PLA, no crystallization takes place during cooling from the melt, therefore, no melting endothermic peak is found on the second heating curve. WAXD analysis indicates PLA and PTT components do not co-crystallize and the crystalline phase of the blends is that of their enriched pure component. With increasing PLA content, the hydrolytic degradation of the blend films increases, while both the tensile strength and the elongation at break of the blend films decrease. That is to say, the hydrolytic degradation of the PTT/PLA blends increases with the introduction of PLA at the cost of the decrease of the flexibility of PTT.  相似文献   

15.
Blends of poly(vinyl chloride) with chlorinated poly(vinyl chloride) (PVC), and blends of different chlorinated poly(vinyl chlorides) (CPVC) provide an opportunity to examine systematically the effect that small changes in chemical structure have on polymer-polymer miscibility. Phase diagrams of PVC/CPVC blends have been determined for CPVC's containing 62 to 38 percent chlorine. The characteristics of binary blends of CPVC's of different chlorine contents have also been examined using differential calorimetry (DSC) and transmission electron microscopy. Their mutual solubility has been found to be very sensitive to their differences in mole percent CCl2 groups and degree of chlorination. In metastable binary blends of CPVC's possessing single glass transition temperatures (Tg) the rate of phase separation, as followed by DSC, was found to be relatively slow at temperatures 45 to 65° above the Tg of the blend.  相似文献   

16.
The miscibility, melting and crystallization behaviour of poly[(R)‐3‐hydroxybutyrate], PHB, and oligo[(R,S)‐3‐hydroxybutyrate]‐diol, oligo‐HB, blends have been investigated by differential scanning calorimetry: thermograms of blends containing up to 60 wt% oligo‐HB showed behaviour characteristic of single‐phase amorphous glasses with a composition dependent glass transition, Tg, and a depression in the equilibrium melting temperature of PHB. The negative value of the interaction parameter, determined from the equilibrium melting depression, confirms miscibility between blend components. In parallel studies, glass transition relaxations of different melt‐crystallized polymer blends containing 0–20 wt% oligo‐HB were dielectrically investigated between ?70 °C and 120 °C in the 100 Hz to 50 kHz range. The results revealed the existence of a single α‐relaxation process for blends, indicating the miscibility between amorphous fractions of PHB and oligo‐HB. © 2002 Society of Chemical Industry  相似文献   

17.
The miscibility behavior and hydrogen bonding of ternary blends of bisphenol A (BPA)/poly(vinyl acetate) (PVAc)/poly(vinyl pyrrolidone) (PVP) were investigated by using differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR). The BPA is miscible with both PVAc and PVP based on the observed single Tg over the entire composition range. FTIR was used to study the hydrogen-bonding interaction between the hydroxyl group of BPA and the carbonyl group of PVAc and PVP at various compositions. Furthermore, the addition of BPA is able to enhance the miscibility of the immiscible PVAc/PVP binary blend and eventually transforms into miscible blend with single Tg, when a sufficiently quantity of the BPA is present due to the significant Δχ and the ΔK effect.  相似文献   

18.
Poly(ethylene carbonate)/poly(lactic acid) blends were successfully prepared by means of a solution film-casting method, and their physicochemical properties were investigated. PEC/PLA blends exhibit partial miscibility and are characterized by the interaction of the ester and carbonic ester groups. One such interaction is between partial charges in –C–O– in –O–C=O of PLA and the carbonyl –C=O of PEC. Another is between –C–O– in –O–C=O of PLA and –C–O– in –CH2–O– of PEC. The value of Tg varies by more than 10 °C across the blends. PEC does not significantly influence the melting temperature of neat PLA, but non-spherical spherulites are formed in PEC-rich blends, whereas the spherulites are spherical with an average size of 30 μm in PLA-rich blends. Crystallization of PLA is influenced by the addition of flexible PEC and by the proportion of PLA in the blends. Interestingly, addition of at least 10 wt% PLA increased Tg, with a crystallinity, Xc of 47% and better thermal degradation properties, with the temperature at 5 wt% weight loss (Td5) more than 30 °C higher than for neat PEC.  相似文献   

19.
The miscibility and effect of physical aging on the crystallization behavior of poly(l ‐lactic acid) (PLLA)/poly(3‐hydroxybutyrate) (PHB) blends with a small amount of PHB (≤10 wt%) have been investigated using differential scanning calorimetry and Fourier transform infrared spectroscopy. It is found that the miscibility of PLLA/PHB blends with a very small percentage of PHB can be modulated by varying the molecular weight of the PHB. That is, a PLLA/PHB blend with low‐molecular‐weight PHB is miscible, whereas that with high‐molecular‐weight PHB is immiscible. It is found that physical aging at temperatures far below the glass transition temperature can promote the cold crystallization kinetics of PLLA in PLLA/PHB blends with high‐molecular‐weight PHB rather than in those with low‐molecular‐weight PHB. These findings suggest that the effect of physical aging on the crystallization behavior of the main component in a crystalline/crystalline blend with a small percentage of the second component is strongly dependent on the miscibility of the blend system. Enhanced chain mobility of PLLA in the interface region of PLLA matrix and PHB micro‐domains is proposed to explain the physical aging‐enhanced crystallization rate in immiscible PLLA/PHB blends with high‐molecular‐weight PHB. © 2013 Society of Chemical Industry  相似文献   

20.
Jia-Hsien Lin 《Polymer》2006,47(19):6826-6835
Crystalline/crystalline blend systems of poly(ethylene oxide) (PEO) and a homologous series of polyesters, from poly(ethylene adipate) to poly(hexamethylene sebacate), of different CH2/CO ratios (from 3.0 to 7.0) were examined. Correlation between interactions, miscibility, and spherulite growth rate was discussed. Owing to proximity of blend constituents' Tg's, the miscibility in the crystalline/crystalline blends was mainly justified by thermodynamic and kinetic evidence extracted from characterization of the PEO crystals grown from mixtures of PEO and polyesters at melt state. By overcoming experimental difficulty in assessing the phase behavior of two crystalline polymers with closely spaced Tg's, this work has further extended the range of polyesters that can be miscible with PEO. The interaction parameters (χ12) for miscible blends of PEO with polyesters [poly(ethylene adipate), poly(propylene adipate), poly(butylene adipate), and poly(ethylene azelate) with CH2/CO = 3.0-4.5] are all negative but the values vary with the polyester structures, with a maximum for the blend of PEO/poly(propylene adipate) (CH2/CO = 3.5). The values of interactions are apparently dependent on the structures of the polyester constituent in the blends; interaction strength for the miscible PEO/polyester systems correlate in the same trend with the PEO crystal growth rates in the blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号