首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we investigated the effects of untreated precipitated silica (PSi) and fly ash silica (FASi) as fillers on the properties of natural rubber (NR) and styrene–butadiene rubber (SBR) compounds. The cure characteristics and the final properties of the NR and SBR compounds were considered separately and comparatively with regard to the effect of the loading of the fillers, which ranged from 0 to 80 phr. In the NR system, the cure time and minimum and maximum torques of the NR compounds progressively increased at PSi loadings of 30–75 phr. A relatively low cure time and low viscosity of the NR compounds were achieved throughout the FASi loadings used. The vulcanizate properties of the FASi‐filled vulcanizates appeared to be very similar to those of the PSi‐filled vulcanizates at silica contents of 0–30 phr. Above these concentrations, the properties of the PSi‐filled vulcanizates improved, whereas those of the FASi‐filled compounds remained the same. In the SBR system, the changing trends of all of the properties of the filled SBR vulcanizates were very similar to those of the filled NR vulcanizates, except for the tensile and tear strengths. For a given rubber matrix and silica content, the discrepancies in the results between PSi and FASi were associated with filler–filler interactions, filler particle size, and the amount of nonrubber in the vulcanizates. With the effect of the FASi particles on the mechanical properties of the NR and SBR vulcanizates considered, we recommend fly ash particles as a filler in NR at silica concentrations of 0–30 phr but not in SBR systems, except when improvement in the tensile and tear properties is required. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2119–2130, 2004  相似文献   

2.
Onium modified montmorillonite (organoclay) was compounded with natural rubber (NR) in an internal mixer and cured by using a conventional sulfuric system. Epoxidized natural rubber with 50 mol % epoxidation (ENR 50) in 10 parts per hundred rubber (phr) was used as a compatibilizer in this study. For comparison purposes, two commercial fillers: carbon black (grade N330) and silica (grade vulcasil‐S) were used. Cure characteristics were carried out on a Monsanto MDR2000 Rheometer. Organoclay filled vulcanizate showed the lowest values of torque maximum, torque minimum, scorch, and cure times. The kinetics of cure reaction showed organoclay could behave as a cocuring agent. The mechanical testing of the vulcanizates involved the determination of tensile and tear properties. The improvement of tensile strength, elongation at break, and tear properties in organoclay filled vulcanizate were significantly higher compared to silica and carbon black filled vulcanizates. In terms of reinforcing efficiency (RE), organoclay exhibited the highest stiffness followed by silica and carbon black filled vulcanizates. Scanning electron microscopy revealed that incorporation of various types of fillers has transformed the failure mechanism of the resulting NR vulcanizates compared to the gum vulcanizates. Dynamic mechanical thermal analysis (DMTA) revealed that the stiffness and molecular relaxation of NR vulcanizates are strongly affected by the filler–rubber interactions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2438–2445, 2004  相似文献   

3.
Natural rubber (NR) usage is wide‐spread from pencil erasers to aero tyres. Carbon black and silica are the most common reinforcing fillers in the rubber industries. Carbon black enhances the mechanical properties, while silica reduces the rolling resistance and enhances the wet grip characteristics. However, the dispersion of polar silica fillers in the nonpolar hydrocarbon rubbers like natural rubber is a serious issue to be resolved. In recent years, cardanol, an agricultural by‐product of the cashew industry is already established as a multifunctional additive in the rubber. The present study focuses on dispersion of silica filler in natural rubber grafted with cardanol (CGNR) and determination of its technical properties. The optimum cure time reduces and the cure rate increases for the CGNR vulcanizates as compared to that of the NR vulcanizates at all loadings of silica varying from 30 to 60 phr. The interaction between the phenolic moiety of cardanol and the siloxane as well as silanol functional groups present on the silica surface enhances the rubber–filler interaction which leads to better reinforcement. The crosslink density and bound rubber content are found to be higher for the silica reinforced CGNR vulcanizates. The physico‐mechanical properties of the silica reinforced CGNR vulcanizates are superior to those of the NR vulcanizates. The CGNR vulcanizates show lower compression set and lower abrasion loss. The dynamic‐mechanical properties exhibit less Payne effect for silica reinforced CGNR vulcanizates as compared to the NR vulcanizates. The transmission electron photomicrographs show uniform dispersion of silica filler in the CGNR matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43057.  相似文献   

4.
Carbon black (CB) and precipitated silica are two major reinforcing fillers in rubbers. CB/silica hybrid filler is also widely used in rubbers to provide balanced properties. CB/silica‐hybrid‐filler‐filled styrene‐butadiene rubber (SBR) containing naphthenic oil (NO), soybean oil (SO) and norbornylized SO (NSO) was investigated. The swelling and curing behavior and rheological, mechanical, thermal, aging and dynamic properties were studied and compared with earlier reported data on CB‐ or silica‐filled SBR. NSO provides better scorch safety and faster cure than SO. Compared with NO, the addition of SO and NSO enhances the thermal stability and aging resistance of SBR vulcanizates. SBR/NSO vulcanizates with hybrid filler exhibit a higher tensile and tear strength than SBR/NO and SBR/SO vulcanizates. A synergistic effect in the abrasion resistance of vulcanizates containing the hybrid filler is observed. An increase of sulfur content in the hybrid‐filler‐filled SBR/NSO vulcanizates provides further improvement in abrasion resistance, wet traction and rolling resistance. © 2017 Society of Chemical Industry  相似文献   

5.
This study explored the feasibility of using torrefied biomass as a reinforcing filler in natural rubber compounds. Carbon black was then replaced with the torrefied biomass in elastomer formulations for concentrations varying from 0% to 100% (60 parts per hundred rubber or phr total). Their influence on the curing process, dynamic properties, and mechanical properties was investigated. Results were compared with the properties of vulcanizates containing solely carbon black fillers. Time to cure (t90) for compounds with torrefied biomass fillers increased, while filler-filler interactions (ΔG') decreased, compared to carbon black controls. At low strains, the tan δ values of the torrefied fillers vulcanizates were similar to the controls. Incorporation of torrefied biomass into natural rubber decreased compound tensile strength and modulus but increased elongation. Replacement with torrefied fillers resulted in a weaker filler network in the matrix. Still, results showed that moderate substitution concentrations (~20 phr) could be feasible for some natural rubber applications.  相似文献   

6.
Filler‐filled natural rubber (NR) vulcanizates were prepared by conventional laboratory‐sized two roll mills and cured using sulfuric system. The effect of thermal aging on physical properties and thermogravimetric analysis (TGA) of oil palm ash (OPA) and commercial fillers (i.e., silica vulkasil C and carbon black N330)‐filled NR vulcanizates at respective optimum loading and equal loading were studied. Before aging, the OPA‐filled vulcanizates showed comparable optimum strength as carbon black‐filled vulcanizates. The hardening of aged filler‐filled NR vulcanizates happened after aging, thereby tensile strength and elongation at break reduced while the modulus increased. Fifty phr carbon black‐filled vulcanizates showed better retention in tensile properties as compared to silica (10 phr) and OPA (1 phr). This was attributed to the addition of different filler loading and this finding was further explained when equal loading of filler‐filled vulcanizates was studied. Fourier transform infra‐red analysis showed chemical structure had changed and tensile fractured surface exhibited smooth appearance due to the deterioration in tensile properties after aging. TGA also denoted the thermal stability was depending on the amount of filler loading. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4474–4481, 2013  相似文献   

7.
Hybrid nanocomposites of styrene butadiene rubber (SBR) with nanostructured fly‐ash (NFA) were prepared in the laboratory by melt blending technique in an internal mixer. Curatives were added on a laboratory two‐roll mill. Curing characteristics as well as physico‐mechanical properties of the composites were evaluated. A comparison on SBR composites filled with fresh fly‐ash (FFA); carbon black (CB) and precipitated silica (PS) has been reported. In general, SBR‐NFA composites exhibit higher state of cure and higher strength properties as compared with HAF black‐filled and fresh fly‐ash‐filled SBR composites at equivalent loadings. This may be attributed to the higher reinforcing ability of NFA. This fact has also been supported by the swelling studies and Kraus' plot. Tear strength and abrasion resistance of the SBR‐NFA composites were superior to FFA‐filled and precipitated silica‐filled vulcanizates, but were inferior to carbon black‐ filled SBR vulcanizates. The SBR‐NFA composites showed lower hardness as compared with both the carbon black‐filled and silica‐filled composites. Transmission electron microscopy and scanning probe microscopy studies revealed that the NFA particles are well dispersed in the SBR matrix. These results were further supported by fracture surface analysis under the SEM, which revealed the role of NFA in the prevention of fracture propagation. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

8.
White rice husk ash (WRHA) and silica filled ethylene–propylene–diene terpolymer (EPDM) vulcanizates were prepared using a laboratory size two‐roll mill. Curing characteristics and physical properties of vulcanizates were studied with respect to the filler loading and filler type. Filler loading was varied from 0–50 parts per hundred resin (phr) at 10 phr intervals. Curing was carried out using a semi‐efficient vulcanization system in a Monsanto rheometer. Enhancement of the curing rate was observed with increasing WRHA loading, whereas the opposite trend was observed for silica‐filled vulcanizates. It was also indicated by the maximum torque and Mooney viscosity results that WRHA offers processing advantages over silica. Compared to the silica‐filled vulcanizates, the effect of filler loading on the physical properties of WRHA‐filled vulcanizates was not significant. According to these observations, WRHA could be used as a diluent filler for EPDM rubber, while silica can be used as a reinforcing filler. © 2001 Society of Chemical Industry  相似文献   

9.
Ethylene‐vinyl acetate rubber (EVM) vulcanizates cured by dicumyl peroxide (DCP) with excellent mechanical properties were obtained by adding superfluous magnesium hydroxides (MH)/methacrylic acid (MAA). Different factors such as the DCP content and MH content were investigated to reveal their effects on the properties of the MH/MAA‐filled EVM vulcanizates. The formulation of DCP of 2 phr, MH of 60 phr, and MAA of 5 phr is recommended for the EVM vulcanizates with excellent mechanical properties. The stress relaxation and stress softening behavior of MH/MAA‐filled EVM vulcanizates were studied. The stress relaxation and stress softening became faster and more obvious with increasing MH content. The hot air aging resistance of EVM vulcanizates filled with different fillers such as silica and high abrasion furnace were compared, and the MH/MAA‐filled EVM vulcanizates had the best aging resistance at 40‐phr filler content. The MH/MAA‐filled EVM vulcanizates had excellent flame retardancy due to the high MH content. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
陈培  田明  邹华  张立群 《橡胶工业》2012,59(3):149-153
采用低乙酸乙烯酯质量分数的乙烯-乙酸乙烯酯橡胶(EVM)制备吸油橡胶,考察硫化剂DCP用量、补强填料种类及用量对其吸油膨胀性能和物理性能的影响,并对其耐老化性能、饱和吸油后稳定性能和保油率进行研究。结果表明:当硫化剂DCP用量为1.5份时,EVM硫化胶的物理性能和吸油膨胀性能较好;与白炭黑填充的硫化胶相比,炭黑填充EVM硫化胶的吸油膨胀性能较优;EVM吸油膨胀材料在酸、碱、盐环境中具有优异的耐老化性能和稳定性能,且保油率高。  相似文献   

11.
Rice husk ash is mainly composed of silica and carbon black remaining from incomplete combustion. Both silica and carbon black have long been recognized as the main reinforcing fillers used in the rubber industry to enhance certain properties of rubber vulcanizates, such as modulus and tensile strength. In this study, two grades of rice husk ash (low‐ and high‐carbon contents) were used as filler in natural rubber. Comparison was made of the reinforcing effect between rice husk ashes and other commercial fillers such as talcum, china clay, calcium carbonate, silica, and carbon black. Fourier transform infrared spectroscopy (FTIR) analysis was employed to study the presence of functional groups on the ash surface. The effect of silane coupling agent, bis(3‐triethoxysilylpropyl)tetrasulfane (Si‐69), on the properties of ash‐filled vulcanizates was also investigated. It was found that both grades of rice husk ash provide inferior mechanical properties (tensile strength, modulus, hardness, abrasion resistance, and tear strength) in comparison with reinforcing fillers such as silica and carbon black. However, the mechanical properties of the vulcanizates filled with rice husk ash are comparable to those filled with inert fillers. The addition of silane‐coupling agent has little effect on the properties of the ash‐filled vulcanizates. This is simply due to the lack of silanol groups on the ash surface. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2485–2493, 2002  相似文献   

12.
莫来石与沉淀法白炭黑填充丁苯橡胶复合材料的性能比较   总被引:1,自引:0,他引:1  
在双辊开炼机中将未处理或用质量分数为3%的硅烷偶联剂A-189处理的莫来石粉体加入到丁苯橡胶(SBR)中制成复合材料.研究莫来石的加入量对SBR性能的影响,并与沉淀法白炭黑填充的SBR的性能进行了比较.结果表明,莫来石粉体对SBR表现出半增强特性;与沉淀法白炭黑填充的SBR相比,SBR/莫来石复合材料表现出良好的硫化特...  相似文献   

13.
Aromatic liquid transport through filled EPDM/NBR blends   总被引:1,自引:1,他引:0  
The sorption and diffusion characteristics of 70/30 ethylene propylene diene monomer rubber (EPDM)/acrylonitrile butadiene rubber (NBR) blends loaded with black fillers such as ISAF (intermediate super-abrasion furnace), HAF (high abrasion furnace) and SRF (semi-reinforcing furnace) have been investigated. The penetrants used were benzene, toluene and xylene. Filled samples have been found to show a reduced solvent uptake compared to the unfilled sample for the given blend ratio. The observations have been correlated with the morphology of the systems. Blends loaded with ISAF exhibited the lowest liquid uptake among black filled systems which has been attributed to the better filler reinforcement and enhanced crosslink density of the matrix. The extent of particulate filler reinforcement has been studied by using Kraus theory. The unfilled and filled systems have been found to exhibit non-Fickian transport behaviour. The effect of fillers on the cure and mechanical properties of the blends have also been investigated. Among the black filler loaded systems used, the ISAF mix showed the highest maximum torque value. The improvement in the cure and mechanical properties has been observed to be the highest for ISAF filled samples followed by HAF and SRF filled systems, which is in compliance with the observation from the sorption studies.  相似文献   

14.
Rice husk ash (RHA) obtained from agricultural waste, by using rice husk as a power source, is mainly composed of silica and carbon black. A two‐stage conventional mixing procedure was used to incorporate rice husk ash into natural rubber. For comparison purposes, two commercial reinforcing fillers, silica and carbon black, were also used. The effect of these fillers on cure characteristics and mechanical properties of natural rubber materials at various loadings, ranging from 0 to 40 phr, was investigated. The results indicated that RHA filler resulted in lower Mooney viscosity and shorter cure time of the natural rubber materials. The incorporation of RHA into natural rubber improved hardness but decreased tensile strength and tear strength. Other properties, such as Young's modulus and abrasion loss, show no significant change. However, RHA is characterized by a better resilience property than that of silica and carbon black. Scanning electron micrographs revealed that the dispersion of RHA filler in the rubber matrix is discontinuous, which in turn generates a weak structure compared with that of carbon black and silica. Overall results indicate that RHA can be used as a cheaper filler for natural rubber materials where improved mechanical properties are not critical. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 34–41, 2005  相似文献   

15.
Rubber compounds are reinforced with fillers such as carbon black and silica. In general, filled rubber compounds show smooth rheological behaviour in measurement of Mooney viscosity or Mooney scorch time. Variation in rheological behaviour was studied in terms of the filler composition using natural rubber compounds filled with both carbon black and silica (carbon black/silica = 60/20,40/40, and 20/60 phr). The compound filled with carbon black/silica of 60/20 phr showed normal rheological behaviour. However, the compounds filled with carbon black/silica of 40/40 and 20/60 phr showed abnormal rheological behaviour, in which the viscosity increased suddenly and then decreased at a certain point during the measurement. The abnormal behaviour was explained by the strong filler–filler interaction of silica. Moreover, the abnormal rheological behaviour was displayed more clearly as the storage time of compounds is increased. © 2003 Society of Chemical Industry  相似文献   

16.
Abstract

Comparison studies on effects of feldspar and silica (Vulcasil C) as a filler in (SMR L grade natural rubber) vulcanizates on curing characteristics, mechanical properties, swelling behavior, thermal analysis, and morphology were examined. The incorporation of both fillers increases the scorch time, t 2, and cure time, t 90, of SMR L vulcanizates. At a similar filler loading, feldspar exhibited longer t 2 and t 90 but lower values of maximum torque, MHR, and torque difference, MHR–ML than did silica-filled SMR L vulcanizates. For mechanical properties, both fillers were found to be effective in enhancing the tensile strength (up to 10 phr), tensile modulus, and hardness of the vulcanizates. However, feldspar-filled SMR L vulcanizates showed lower values of mechanical properties than did silica-filled SMR L vulcanizates. Swelling measurement indicates that swelling percentages of both fillers-filled SMR L vulcanizates decrease with increasing filler loading whereas silica shows a lower swelling percentage than feldspar-filled SMR L vulcanizates. Scanning electron microscopy (SEM) on fracture surface of tensile samples showed poor filler–matrix adhesion for both fillers with increasing filler loading in the vulcanizates. However, feldspar-filled SMR L vulcanizates showed poorer filler–matrix adhesion than did silica-filled SMR L vulcanizates. Thermogravimetric analysis (TGA) results indicate that the feldspar-filled SMR L vulcanizates have higher thermal stability than do silica-filled SMR L vulcanizates.  相似文献   

17.
任兴丽  蒋兴荣 《弹性体》2013,23(4):38-42
针对氟橡胶加工性能不良、耐磨性差、价格昂贵的问题,以耐磨炭黑和白炭黑为增强填料,二硫化钼为减磨填料对其进行改性,考察了不同填料种类及用量对氟橡胶力学及耐磨性能的影响。结果表明:炭黑和白炭黑用量分别为25份和20份时硫化胶的综合性能最优,在此基础上,随着二硫化钼用量的增加,炭黑增强氟橡胶的摩擦系数减小,耐磨性提高,但力学性能有所降低;对于白炭黑增强氟橡胶体系,随着二硫化钼用量增大,耐磨性和力学性能均先减小后增大。  相似文献   

18.
Natural rubber samples were filled with agricultural waste products (cocoa pod husks and rubber‐seed shell) at 50 phr, mixed on a two‐roll mill, and cured using the semiefficient vulcanization system. The physicomechanical properties, tensile strength, modulus at 100% elongation, elongation at break, hardness, abrasion resistance, flex fatigue and compression set, of the agricultural waste products‐filled natural rubber compounds were determined and compared with the values obtained for vulcanisates filled with commercial carbon black (HAF N330). The effect of blending the raw and carbonized agricultural waste products with the commercial grade N330 carbon black on the physicomechanical properties of the natural compounds was studied. It was found that the raw agricultural waste products were ineffective compared with N330 carbon black as reinforcing filler for natural rubber compound mixes and could be classified as semireinforcing fillers. Blends containing up to 40 wt % of the raw agricultural waste products and more than 60 wt % of the carbonized waste products gave natural rubber compounds with comparable physciomechanical properties with compound obtained with N330 carbon black. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2561–2564, 2006  相似文献   

19.
Graft copolymers of maleic anhydride and natural rubber or so‐called maleated natural rubbers (MNRs) were prepared in a molten state with varying maleic anhydride contents from 4 to 10 phr. In this work, the filler–filler and filler–rubber interactions of the MNR and precipitated silica were investigated. The MNR compounds containing 40 phr of silica both with and without 9 wt % of silane coupling agent were prepared. By increasing the maleic anhydride contents, the Mooney viscosity and cure times were increased, but the torque differences and cure rate indices were decreased. Bound rubber was increased with increasing maleic anhydride content, indicating an increase of filler–rubber interaction. In case of the compounds without silane, the MNR with 6 phr of maleic anhydride showed the lowest filler–filler interaction as indicated by a decrease of storage modulus upon an increase of strain in the filled compound i.e., Payne effect. This MNR compound also yielded the optimum mechanical properties. It has been demonstrated that a use of MNR with appropriate maleic anhydride content can reduce filler–filler interaction dramatically and hence improve a silica dispersion, as confirmed by SEM micrographs, resulting in an enhancement of the mechanical and dynamical properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
The thermal conductivities of emulsion polymerized styrene-butadiene rubber (ESBR) vulcanizates filled with alumina (Al2O3), zinc oxide (ZnO), carbon nanotubes (CNTs), silicon carbide (SiC), are measured by steady-state method. The effects of types and loadings of the fillers and their mixture on thermal conductivities of the ESBR vulcanizates are investigated. The results show that the thermal conductivity of ESBR vulcanizates filled with alumina or zinc oxide, increases nearly linearly with increasing loading when the filler loading exceeded 20 phr; the ESBR vulcanizates filled with CNTs have the highest thermal conductivity at a given filler loading in comparison with other composite vulcanizates. At a given loading of 100 phr, the ESBR vulcanizate filled with two different particle sizes SiC of 1–3 and 5–11 μm at the mass ratio of 1:1 has the highest thermal conductivity and relatively good mechanical properties. The experimental results are analyzed using Geometric mean model and Agari’s equation to explain the effect of filler types and particle sizes on the formation of thermal conductive networks. The thermal conductivity of the ESBR vulcanizates filled with Al2O3 or ZnO or CNTs could be well predicted by optimized parameters using Agari’s equation for a polymer composite filled with mixtures of particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号