首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2016,42(5):6301-6311
The objective of this study was to investigate the clay drying as a unit operation in the refractory materials processing. Two clays that varied in chemical and mineralogical compositions were experimentally tested in a laboratory dryer. The results obtained on the green samples prior to drying indicated that clays have adequate plasticity and refractoriness for application in shaped refractories. The operating parameters of the dryer were regulated: temperature ranged from 40 to 60 °C, humidity increased in the interval 30–70%; and the airstream rate was 1.3 m/s. The correlation analysis between operating parameters and calculated and/or measured drying outputs was conducted for better comprehension of the clay׳s role as a refractory binder. Subsequently, a mathematical optimization of the drying regime was conveyed. The effect of the variables (operation parameters) on the drying parameters (critical moisture, equilibrium moisture, dryness degree, etc.) was compared and evaluated. The response surface method, standard score analysis, cluster method, and principal component analysis were used as a means of the drying regime optimization. Assessment of the drying regime impact on the dried samples quality highlighted optimal result for both clay types: SS=0.95, temperature 50 °C, and humidity 40%. Multiple comparison analyses pointed out that optimized combination of the drying operation parameters decreases the quantity of conducted tests. Furthermore, optimal combination of drying parameters reduces negative effects of clay binder inherent properties on the resulting product which in return improves energetic and economic sustainability of refractories production.  相似文献   

2.
《Ceramics International》2015,41(8):9939-9946
In this article, the amount of dispersant agent [i.e., polyethyleneimine (PEI)] and pH was optimized to achieve high colloidal stability in yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) suspension. Rheological properties of aqueous Y-TZP suspension in the presence of different amounts of PEI were evaluated via viscosity tests to identify the optimal amount of dispersant agent. Zeta potential and particle size measurements were employed to determine the suitable pH that can establish good colloidal stability. Mechanical properties (e.g., density and hardness) and morphological properties were also considered in determining the optimal pH. Rheological tests showed that Y-TZP suspension with 0.4 wt% PEI had the lowest viscosity, which is suitable for colloidal processing. pH 2 and 4 were recorded to have the lowest particle size and highest zeta potential, respectively. Characterization tests and morphological analysis showed that pH 2 had the highest density (92.5%), highest hardness (10.36 GPa), and homogeneous microstructure with fine average grain size (486 nm). Thus, the dispersant amount of 0.4 wt% PEI and pH 2 were selected as the optimal parameters for colloidal processing of aqueous Y-TZP suspension. Y-TZP suspension with excellent colloidal stability and reliable final products was produced under these parameters.  相似文献   

3.
The nano-crystalline lithium–mica glass–ceramic with separated crystallite size of 13 nm was prepared using sol–gel technique. In such a process, the structural evolutions and microstructural characteristics of the synthesized samples were investigated through X-ray diffraction, transmission electron microscopy, thermal analysis and Fourier transform infrared spectroscopy. It was found that the crystallite size of the mica obtained from sol–gel method is smaller than the one synthesized via conventional melted method. The XRD results also showed that the crystallization of mica occurred above 675 °C and it could originate from MgF2 so that the next stage will also be the transformation from mica to norbergite and norbergite to chondrodite. The activation energy of the crystallization and Avrami factor were measured as 376.7 kJ mol?1 and 2.3, respectively. It is found that the bulk crystallization could be considered as the predominant crystallization mechanism for the glass–ceramic.  相似文献   

4.
《Ceramics International》2015,41(8):9745-9752
Porous silica ceramics were obtained at low forming pressure and low sintering temperature by using diatomaceous earth as a silica source and boric acid as an inexpensive additive. The starting raw material, diatomite from surface coal mine Kolubara, Serbia, was purified from organic and inorganic impurities by using heat and chemical treatment. Boric acid was used as binding and sintering aid up to 2 wt%. Powder was compacted by using different pressures of 40, 60 and 80 MPa. The pressed samples were sintered at 850, 1000, 1150, and 1300 °C for 4 h in air. A relatively high porosity in the range of 60–70% is obtained for the samples pressed at 40, 60 and 80 MPa and sintered at 1000 °C. Median pore size diameters are in the range of macroporous up to 2 μm in the samples sintered at 1150 and 1300 °C. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scaning electron microscopy (SEM) and mercury porosimetry measurements were employed to characterize the phases, functional groups, microstructure and pore size distribution of the obtained samples. In addition, measurements of densities and open porosities by immersion technique, according to Archimedes principle, were used. The relations between mechanical properties (Young modulus, Poisson ratio, and compressive strength) versus content of boric acid in the investigated samples were studied and disscussed.  相似文献   

5.
Spark plasma sintering (SPS) parameters are reported to have a remarkable effect on microstructure and fracture toughness of boron carbide. Fully dense fine-grained boron carbide samples have been sintered by SPS at 1700 °C for 3 min as optimal conditions. Both temperature and the current density applied during sintering seem to be important parameters for fully dense output and can induce significant changes on the final microstructure. The initial grain size of the powder is a crucial factor to perform fine-grained fully dense specimens. The improvement on room-temperature hardness and toughness is discussed.  相似文献   

6.
《Ceramics International》2017,43(2):2039-2045
Sub-micron sized TiB2 ceramic powders were prepared via self-propagating high-temperature synthesis (SHS) followed by HCl leaching at different temperatures. Purified powders obtained using optimum process parameters were consolidated by field assisted sintering technology/spark plasma sintering (FAST/SPS) technique. Phase and microstructural analyses of both the powder and sintered samples were carried out by X-ray diffractometer (XRD) and scanning electron microscope (SEM). The chemical analyses and particle size measurements of the specimen were conducted by inductively coupled plasma-mass spectrometry (ICP-MS) and dynamic light scattering (DLS) techniques. The final properties of the sintered sample were determined in terms of density and microhardness. The effects of different HCl leaching temperatures on the formation, microstructure, particle size, purity and sintering behavior of the SHS-produced TiB2 powders were investigated. The SHS reaction of TiO2-B2O3-Mg powders as a starting mixture yielded MgO, Mg3(BO3)2 and Mg beside the desired phase TiB2. All three magnesium containing by-products were completely removed by performing hot HCl leaching. TiB2 powders after SHS reaction and leaching with 9.3 M HCl for 30 min at 80 °C revealed a minimum purity of 98.4% and a homogenous particle size distribution with an average particle size of 536 nm. In the ultimate SPS experiment which was conducted at 1500 °C for 5 min under a pressure of 50 MPa, a relative density of 94.9% and a micro-hardness value of 24.56 GPa were achieved.  相似文献   

7.
《Ceramics International》2016,42(13):14452-14455
The effect of the thermal annealing temperature was investigated on ZnO tetrapods grown by a thermal evaporation method. The ZnO tetrapods were synthesized by thermal evaporation of Zn powder in air. The annealing was done in an oxygen gas environment at temperatures ranging from 400 to 1000 °C for 1 h. As the annealing temperature increased from 400 °C to 800 °C, the morphology of the tetrapod remained unchanged; however, the size of the tetrapods increased. With a further increase in the annealing temperature from 800 °C to 1000 °C, the ZnO tetrapod changed drastically to nanoneedles. As-grown and annealed samples had an identical crystal structure, which was a wurtzite structure. A strong and sharp ultraviolet emission at 380 nm was observed for the 600 °C –annealed sample indicating the high crystalline quality. The ultraviolet emission intensity decreased abruptly for the samples annealed at 800 °C and 1000 °C, which exhibits the degradation in crystallinity.  相似文献   

8.
《Ceramics International》2016,42(8):9887-9898
The aim of this study is to explore the influence of the processing route on the structural and physical properties of bulk MgTiO3 ceramics. Commercially available MgO and TiO2 powders were mechanically activated in a planetary ball mill. Green bodies were formed by an isostatic pressure of 300 MPa. The sintering of these samples was done either by the Two-Step Sintering (TSS) approach or by conventional pressureless sintering followed by Hot Isostatic Pressing (post-HIPing). The first set of compacts was sintered by TSS in air at 1300 °C for 30 min and the next step was performed at 1200 °C for 20 h. The density of the obtained samples after the two-step sintering reached almost 90% of the theoretical density (%TD). The second set of compacts was sintered at 1400 °C for 30 min in air. The samples without open porosity were post-sintered by the HIP at 1200 °C for 2 h in an argon atmosphere at a pressure of 200 MPa. The density significantly increased up to 96%TD. The differences between samples prepared by these two techniques were also analyzed by XRD and SEM. The lattice vibration spectra were obtained using Raman spectroscopy and they indicate a high degree of lattice disorder, as well as high values of the oxygen vacancy concentration. Electrical characteristic were established in the frequency range from 10 kHz to 10 GHz. The choice of the processing route had considerable influence on structural and physical properties of MgTiO3 ceramics.  相似文献   

9.
《Ceramics International》2016,42(5):6383-6390
Porous silica ceramics were obtained at low forming pressure (40–80 MPa) and low sintering temperature (850–1300 °C) for 4 h in air. Boric acid was used as a low-cost additive, in the amount of 2 wt%. Relatively high porosities of nearly 40% and 65% are obtained for the samples of clay and diatomite pressed at 40 MPa, and sintered at 1000 °C, respectively. The samples sintered at 1150 °C and 1300 °C have the average pore size diameters in the range of macroporous for clay 0.2–10 μm and for diatomite 0.2–5 μm. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and mercury porosimetry measurements were employed to characterize of the obtained samples. Measurements of densities and open porosities by immersion technique were used, according to the Archimedes principle. The relations between mechanical characteristics of the samples formed by using different pressures and sintered at different temperature, were discussed.  相似文献   

10.
The effect of the sintering conditions (temperature and time) on the microstructure (density and grain size) and mechanical properties (hardness, elastic modulus, and strength) of β-tricalcium phosphate (β-TCP) bioceramics fabricated from Ca-deficient commercial powders is analyzed. Contrary to current general opinion, it is demonstrated that the optimal sintering temperature to maximize the mechanical performance of this β-TCP material is not necessarily below the β ? α transformation temperature (1125 °C). In particular, optimal performance was achieved in samples sintered at 1200 °C for 3 h, since it was not until higher temperatures or longer sintering times that microcracking develops and mechanical properties are degraded. It is argued that the residual stresses developed during this reversible transformation do not lead to microcrack propagation until sufficiently large starting flaws develop in the microstructure as a consequence of grain growth. Implications of these findings for the processing routes to improve sintering of this important bioceramic are discussed.  相似文献   

11.
《Ceramics International》2015,41(7):8320-8330
Recent advancements in computational design and additive manufacturing have enabled the fabrication of 3D prototypes with controlled architecture resembling the natural bone. Powder-based three-dimensional printing (3DP) is a versatile method for production of synthetic scaffolds using sequential layering process. The quality of 3D printed products by this method is controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The X-direction printed scaffolds with a pore size of 0.8 mm and a layer thickness of 0.1125 mm were subjected to the depowdering step. The effects of four layer printing delays of 50, 100, 300 and 500 ms on the physical and mechanical properties of printed scaffolds were investigated. The compressive strength, toughness and tangent modulus of samples printed with a delay of 300 ms were observed to be higher than other samples. Furthermore, the results of SEM and μCT analyses showed that samples printed with a delay of 300 ms have higher dimensional accuracy and are significantly closer to CAD software based designs with predefined 0.8 mm macro-pore and 0.6 mm strut size.  相似文献   

12.
This paper presents the results of research on mechanical activation of raw talc in a high-energy speed rotary mechanoactivator. The results of research on effect of mechanically activated talc on the degree of recovery Fe2O3 by hydrometallurgical method are also presented. The process and mechanism of mechanical activation in this type of mechanoactivator were achieved by impact.The variable parameters of the mechanoactivator operation were: rate of rotor revolutions (n0 = 10,000 and n0 = 20,000 rpm), circle sieve mesh (80, 120, 200 and 500 μm) and the current intensity. The following parameters of the dry mechanical activation process were studied: mechanical activation time, rotor speed, mechanoactivator capacity and specific energy consumption. The mechanically activated powder was examined by application of differential thermal and thermogravimetric analyses, analysis of the degree of mechanical activation and the specific surface area as well.According to the obtained results, the highest rate of mechanical activation was obtained with a nominal mechanoactivator load. The degree of mechanical activation increases with increasing the rate of rotor revolution, circle sieve mesh size and with the increasing mechanoactivator load. It was shown that high-grade talc concentrate with low content of Fe2O3 can be obtained by physical-chemical process. A new approach for obtaining high-grade talc concentrate was achieved trough mechanically activated talc effect on the degree of recovery of Fe2O3 by hydrometallurgical process.  相似文献   

13.
《Ceramics International》2016,42(4):5286-5290
In the present work, we have attempted to reduce the effect of coring effect in the titanate ceramic system BaTi4O9 (BT4) by doping it with Mn4+. The microwave dielectric BaTi4O9 ceramics doped with 0, 0.5 and 1.0 mol% Mn4+ were synthesized by conventional ceramic processing route. The XRD studies confirmed a single phase crystalline structure for all the ceramic samples studied. The SEM micrographs of the ceramics reveal a microstructural change leading towards a more uniform grain size distribution as the Mn4+ content increases to 1.0 mol%. In the low frequency region (100 Hz to 1 MHz), the temperature stability of dielectric properties exhibits a marked improvement with the increasing amount of Mn4+ in the ceramic system. In the microwave frequency region (9.3 GHz), Q-factor increases from 11,625 GHz to 46,500 GHz for BaTi4O9 ceramic doped with 1.0 mol% Mn4+. The present paper reveals that the commonly observed degradation of dielectric properties due to coring effect in the BaTi4O9 ceramic system can be controlled by doping it with an appropriate quantity of Mn4+.  相似文献   

14.
《Ceramics International》2016,42(4):5319-5325
Investigations of the high-pressure sintered nanocrystalline mullite powder are presented. The synthesized mullite powder with crystallite size of 51 nm was densified by using high-pressure “anvil-type with hollows” apparatus at 4 GPa over the temperature range of 1100–1500 °C in 100 °C steps. The phase composition and structural parameters of the densified samples were studied as a function of densification temperature. The XRD analysis revealed the appearance of new phases, such as kyanite and corundum, whose development affected the densities of the sintered samples. High relative densities of the sintered samples were obtained because of the application of high pressure. The needle-like microstructure was developed owing to the anisotropic grain growth of mullite. The elongated mullite grains reached the length of approximately 5 µm at 1400 °C, whereas the grains treated at 1500 °C became thicker preserving the same needle length. The Vickers microhardness of the developed microstructures increased with the increase of temperature up to 1400 °C, while at 1500 °C it was slightly reduced due to the grain coarsening.  相似文献   

15.
Transparent 1 at.% Nd:YAG ceramics were fabricated by spark plasma sintering (SPS) from nanometric Nd:YAG powders, both undoped and pre-mixed with 0.25 wt.% LiF additive. The mechanical and optical properties of the consolidated samples were determined as a function of the processing parameters, namely holding time, peak sintering temperature and heating rate. The presence of LiF accelerates densification and grain growth. Hardness and bending strength are decreased in the presence of the LiF additive, in consistence with the increase of the grain size. The optical transmittance in the doped samples sintered at 1400 °C, reaches 97% of the theoretical transmission and is significantly higher than that of the undoped samples. The increased optical transmittance of the doped samples is attributed to pore elimination by enhanced mass transport and cleansing of the carbon contamination by the fluorine component of the LiF additive. The presence of the latter has no effect on the absorption spectrum of the Nd:YAG ceramic.  相似文献   

16.
《Ceramics International》2016,42(7):8155-8164
In this paper effect of free silica removal from mullite microfilter membranes using different sodium hydroxide (NaOH) concentrations at different temperatures and for different removal times was studied. The prepared membranes were subjected to XRD, SEM, porosity analysis, and mechanical strength measurement. Response surface methodology (RSM) based on central composite design (CCD) was used to design the experiments and analyze three operating parameters including; NaOH solution concentration, NaOH solution temperature and removal time. The optimum porosity of 49.4 was obtained with NaOH solution concentration of 35 wt% at temperature 75 °C and removal time equal to 8 h.Water flux and mechanical strength as important characteristics were measured for all the membranes. For the membrane with the optimum porosity, water flux, mechanical strength, and free silica removal percentage were 61.7 kg/m2 h, 21.6 MPa, and 28.2%, respectively. The maximum rejection percentage was 97.2% and emulsion flux for this state was 15.6 kg/m2 h at temperature 25 °C and cross flow velocity of 1.5 m/s.  相似文献   

17.
《Ceramics International》2017,43(2):2170-2173
HfB2-x vol%CNTs (x=0, 5, 10, and 15) composites are prepared by spark plasma sintering. The influence of CNTs content and sintering temperature on densification, microstructure and mechanical properties is studied. Compared with pure HfB2 ceramic, the sinterability of HfB2-CNTs composites is remarkably improved by the addition of CNTs. Appropriate addition of CNTs (10 vol%) and sintering temperature (1800 °C) can achieve the highest mechanical properties: the hardness, flexural strength and fracture toughness are measured to be 21.8±0.5 GPa, 894±60 MPa, and 7.8±0.2 MPa m1/2, respectively. This is contributed to the optimal combination of the relative density, grain size and the dispersion of CNTs. The crack deflection, CNTs debonding and pull-out are observed and supposed to exhaust more fracture energy during the fracture process.  相似文献   

18.
The effect of two sintering methods (conventional sintering and two-step sintering) and of alumina addition on the sintering behaviour of a ZnO-rich waste powder (ZnO > 95 wt%), a by-product from brass smelting industry, was studied aiming to improve the sintered density and grain size. Both conventional sintering and two-step sintering methods did not lead to fully dense powder compacts, as densification was conditioned by abnormal grain growth and the particle size of the ZnO-rich residue. When two-step sintering was used the grain growth was reduced comparatively to conventional sintering method. The highest relative sintered density (about 90%) was achieved when samples of ZnO waste and samples of ZnO waste with 2 wt% added Al2O3 were processed by two-step sintering and corresponded to a mean grain size of around 18 µm and 7 µm, respectively. XRD and SEM results indicated that alumina addition helped to inhibit grain growth due to the formation of gahnite spinel (ZnAl2O4) precipitates in the grain boundaries of zincite (ZnO) grains.  相似文献   

19.
《Ceramics International》2017,43(8):6069-6074
The aim of this paper was to investigate the effect of slip casting parameters on the green density of MgAl2O4 spinel. In order to obtain samples with suitable mechanical and optical properties, it is necessary to prepare bulk samples with a fine grain size along with a low level of impurity and high density. Slip casting is widely used in the processing of optical ceramics to achieve a body with high green density and low sintering temperature. In the present study, several spinel suspensions with similar solid content but different viscosities and particle sizes (90, 150, 300 and 500 nm) were prepared and shaped into a dense body. Viscosity of suspension depended on dispersant content, such that the addition of dispersant firstly caused viscosity to decrease, but it was increased by further dispersant addition, irrespective of the suspension particle size. The green density range of samples was 36–67% of the theoretical value. Rheological behaviour and green density measurements showed that powder particles smaller than 90 nm were unsuitable for slip casting because agglomeration of powder particles led to high viscosity and hence, low green density. The optimal particle size for slip casting was found to be 150 nm.  相似文献   

20.
《Ceramics International》2016,42(13):14843-14848
A novel fibrous porous mullite network with a quasi-layered microstructure was produced by a simple vacuum squeeze moulding technique. The effects of organic binder content, inorganic binder and adsorbent on the microstructure and the room-temperature thermal and mechanical properties of fibrous porous mullite ceramics were systematically investigated. An anisotropy microstructure without agglomeration and layering was achieved. The fibrous porous mullite ceramics reported in this study exhibited low density (0.40 g/cm3), low thermal conductivity (~0.095 W/(m K)), and high compressive strength (~2.1 MPa in the x/y direction). This study reports an optimal processing method for the production of fibrous porous ceramics, which have the potential for use as high-temperature thermal insulation material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号