首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
聚氨酯弹性体性能的影响因素   总被引:2,自引:0,他引:2  
考察了不同结构多元醇、异氰酸酯指数、扩链剂种类及用量等对聚氨酯弹性体(PUE)物理机械性能和动态力学性能的影响.结果表明,在无扩链剂的情况下,用7种多元醇制备的PUE中,以相对分子质量为2 000的聚己内酯多元醇制得PUE的拉伸强度最高,达到34.5 MPa;以相对分子质量为3 000的聚己二酸己二醇酯制得的PUE是一种典型的结晶高聚物;对于同一结构的多元醇.相对分子质量越大,其制得PUE的拉伸强度及扯断伸长率越大;随着异氰酸酯指数的增加,PUE的拉伸强度与邵尔A硬度增大,而扯断伸长率下降,损耗因子(tan δ)最大值略有下降,玻璃化转变温度(Tg)略有升高;用液化3,3'-二氯-4,4'-二氨基二苯甲烷(L-MOCA)作扩链剂时,PUE的扯断伸长率均表现出大幅度的下降;用液化对苯二酚二羟乙基醚及液化间苯二酚二羟乙基醚作扩链剂时,PUE的扯断伸长率下降幅度较小;3种扩链剂均可使PUE的Tg升高,tan δ最大值减小;随着扩链剂L-MOCA用量的增加,PUE的邵尔A硬度增大,而扯断伸长率呈下降趋势.拉伸强度则先下降后升高,Tg升高,tan δ最大值减小.  相似文献   

2.
先用4, 4'–二苯基甲烷二异氰酸酯(MDI)与不同相对分子质量不同种类低聚物多元醇合成预聚体,再以1, 4–丁二醇(BDO)为扩链剂制备聚氨酯弹性体,考察了软段对聚氨酯弹性体力学性能的影响。结果表明:当预聚体NCO含量相同时,聚酯型聚氨酯弹性体的力学性能整体优于聚醚型的,随低聚物多元醇相对分子质量的增加,聚氨酯弹性体的硬度、300%定伸应力、拉伸强度和撕裂强度降低,拉断伸长率增加,扩链系数为1.00时聚氨酯弹性体的力学性能最好;随预聚体NCO含量增加,聚氨酯弹性体的硬度、300%定伸应力、拉伸强度和撕裂强度提高,拉断伸长率下降。  相似文献   

3.
谢富春  郭福全 《弹性体》2011,21(2):44-47
采用不同种类的聚醚多元醇、二异氰酸酯和扩链剂为原料合成聚氨酯,讨论了聚醚多元醇的相对分子质量、二异氰酸酯的结构、软硬段比例、二异氰酸酯指数、扩链剂种类及用量对聚氨酯性能的影响。结果表明:采用高相对分子质量的聚醚,聚氨酯的定伸强度、拉伸强度和撕裂强度下降,断裂伸长率提高;聚氨酯的性能随硬段含量的增加而提高;异氰酸酯指数控制在1.01~1.03左右;扩链剂链长越短,聚氨酯的微相分离程度和力学性能越好;聚氨酯性能随1、4-丁二醇用量的增加而提高,达到一定用量时反而下降。  相似文献   

4.
以二苯基甲烷二异氰酸酯(MDI)和甲苯二异氰酸酯(TDI)共混二异氰酸酯为原料,合成一系列聚氨酯弹性体制品,讨论了MDI/TDI摩尔比、扩链剂种类、聚醚多元醇种类等对聚氨酯弹性体制品性能的影响。结果表明,当MDI/TDI摩尔比为1∶1时,具有最高的伸长率,但拉伸强度和撕裂强度有所降低;以3,3′-二氯-4,4′-二苯基甲烷二胺(MOCA)作为扩链剂时,性能优于3,5-二甲硫基甲苯二胺(E-300)和1,4-丁二醇(BDO);采用聚醚DL-1000合成聚氨酯弹性体时,其拉伸强度和撕裂强度优于聚醚DL-2000,但伸长率降低。  相似文献   

5.
首先以聚己内酯多元醇(PCL)、4,4’-二苯基甲烷二异氰酸酯(MDI)、液化MDI和MDI-50为原料合成聚氨酯(PU)预聚体,再用混合扩链剂制备聚氨酯弹性体。讨论了预聚体异氰酸酯基(NCO)含量、异氰酸酯类型、1,3-丁二醇(1,3-BDO)含量、聚酯软段相对分子质量对聚氨酯弹性体力学性能的影响。结果表明:提高预聚体NC0基含量可使弹性体的硬度、300%定伸应力、拉伸强度和撕裂强度明显提高,拉断伸长率和冲击弹性则下降;纯MDI弹性体综合力学性能最好,液化MDI次之,MDI-50最差;提高1,3-BDO含量可使弹性体的硬度、撕裂强度和冲击弹性明显下降;软段相对分子质量为1000的聚氨酯弹性体的硬度、300%定伸应力、拉伸强度和撕裂强度较高,软段相对分子质量为2000的聚氨酯弹性体的拉断伸长率和冲击弹性较高。  相似文献   

6.
以不同种类的聚酯多元醇(PEh-2000、PBA-2000、PEBA-2000、PEPA-2000)为软段,2,4-甲苯二异氰酸酯(TDI-100)和3,3’-二氯-4,4’-二氨基二苯甲烷0IocA)为硬段,合成了聚氨酯(PU)弹性体。讨论了软段种类、预聚体NCO含量、硫化时间、以及扩链系数对聚氨酯弹性体力学性能的影响。结果表明,不同软段中PEA的综合力学性能最好。预聚体NCO含量的提高使Pu弹性体的硬度、拉伸强度、撕裂强度、300%定伸应力增加,但扯断伸长率降低。聚酯/TDI/MOCA体系经100℃4h后,硫化过程基本完成,扩链系数a为0.98时PU弹性体的综合力学性能最好。  相似文献   

7.
采用不同游离甲苯二异氰酸酯(TDI)含量的预聚体和不同结构的二胺扩链剂3,3'-二氯-4,4'-二氨基二苯基甲烷(MOCA)、3,5-二甲硫基甲苯二胺(E-300)和4,4'-亚甲基双(3-氯-2,6-二乙基苯胺)(MCDEA)制备了一系列用于液压支架密封的聚氨酯(PU)弹性体,考察了游离TDI含量及不同扩链剂对PU弹性体物理机械性能、热性能和动态力学性能的影响。结果表明,采用相同预聚体时,对于不同的扩链剂,当扩链系数为95%时,PU弹性体的综合性能最佳;以MCDEA为扩链剂制得PU弹性体的邵尔A硬度、弹性和定伸应力最高,扯断伸长率最低,低温动态性能最好,而撕裂强度和玻璃化转变温度则以E-300为扩链剂制得的PU弹性体最低,拉伸强度相差较小;以MCDEA和MOCA为扩链剂制得PU弹性体的耐热性优于以E-300为扩链剂制得的PU弹性体;以MOCA为扩链剂制得PU弹性体的高温动态性能最好;采用相同扩链剂时,随着预聚体中游离TDI含量的降低,PU弹性体的弹性、定伸应力、撕裂强度和动态性能提高,扯断伸长率降低和永久变形减小,拉伸强度相差较小。  相似文献   

8.
以多种多元醇、异氰酸酯与扩链剂为原料采用预聚法合成聚氨酯弹性体,考察了不同多元醇、异氰酸酯、扩链剂的种类及含量对聚氨酯弹性体性能的影响。结果表明:聚己二酸乙二醇酯二醇(PEA)与三羟甲基丙烷(TMP)并用,在质量比为95∶5时,制得的弹性体综合力学性能较好。随着4,4′-二环己基甲烷二异氰酸酯(H12MDI)含量的增加,材料的强度有所增加,预聚体的凝胶时间逐渐延长。  相似文献   

9.
用聚酯多元醇(PBA、PEA、PEPA、PCL)、4,4'-二苯基甲烷二异氰酸酯(MDI)和混合扩链剂等原料合成了浇注型聚氨酯弹性体(PUE)。考察了聚酯多元醇种类、预聚体-NCO质量分数、扩链剂和扩链系数(R)等对PUE力学性能的影响,并比较了MDI/混醇体系与2,4-甲苯二异氰酸酯(TDI)/MOCA体系的性能。结果表明,PUE的硬度、模量和撕裂强度随预聚体-NCO含量增加而增加,随交联密度提高,撕裂强度和扯断伸长率下降,R>1.05时,PUE的力学性能急剧变化,MDI/混醇体系比TDI/MOCA体系的冲击弹性好。  相似文献   

10.
以不同相对分子质量的聚醚多元醇(PPG)、TDI和3,5-二乙基甲苯二胺(DETDA)为原料,采用溶剂法合成了聚氨酯(PU)弹性体,分别研究了溶剂种类、NCO含量、聚醚多元醇相对分子质量、扩链系数等对PU弹性体力学性能的影响。结果表明,二甲苯对PU弹性体性能影响最小;PU弹性体的硬度、定伸模量、拉伸强度和撕裂强度随聚醚多元醇的相对分子质量的升高而下降,冲击弹性、伸长率和永久变形随聚醚多元醇的相对分子质量的升高而上升;当预聚体NCO质量分数为6.30%、扩链系数为0.95时,PU弹性体的综合力学性能最佳。  相似文献   

11.
以聚四氢呋喃醚二醇(PTMG)、2,4-甲苯二异氰酸酯(TDI)、3,3’-二氯-4,4’-二胺基二苯甲烷(MOCA)或3,5-二甲硫基甲苯二胺(E-300)为主要原料,采用预聚体法合成浇注型聚氨酯弹性体(PUE)。分析了预聚体NCO基含量、PTMG软段相对分子质量、两种扩链剂以及扩链系数对PUE力学性能的影响。结果表明,随着预聚体NCO基含量增加,PUE的硬度、拉伸强度、300%定伸应力和撕裂强度提高,扯断伸长率下降,扯断永久形变发生微小变化;随着软段相对分子质量的不断提高,PUE的硬度、拉伸强度、300%定伸应力和撕裂强度缓慢下降,而扯断伸长率和扯断永久形变升高;在其它条件相同时,扩链剂E-300与MOCA相比,综合力学性能较好。  相似文献   

12.
E-300扩链聚氨酯弹性体的力学性能研究   总被引:2,自引:0,他引:2  
以多元醇(PEA,PPG,PTMG),PDI,E-300为原料,制备了PU弹性体。研究了多元醇类型,NCO基含量,扩链剂用量和硫化时间等因素对PU弹性体力学性能的影响。结果表明:拉伸强度、拉断伸长率和冲击弹性最高的分别是PEA-PU,PPG-PU和PTMG-PU;PU的硬度、强度和模量随预聚体NCO基含量增加而增加;扩链剂的用量为90%时,PU的力学性能最佳。  相似文献   

13.
以聚酯(PEA、PEPA)或聚醚(PTMG)和TDI为原料合成聚氨酯(PU)预聚体,用三异丙醇胺(TIPA)和1,4-丁二醇(BDO)的混合物作扩链剂制备PU弹性体。讨论了软段相对分子质量、弹性体交联点相对分子质量和扩链剂的种类对PU弹性体性能的影响。结果表明,PU弹性体的硬度、拉伸强度、300%模量和撕裂强度随软段相对分子质量的增加而下降,而伸长率和冲击弹性随软段相对分子质量的增加而增加;交联点相对分子质量为6600时,PTMG2000为软段的PU弹性体的拉伸强度最高,达到28.44MPa;与TMP/BDO扩链的聚酯型PU弹性体相比,TIPA/BDO扩链的弹性体的拉伸强度、伸长率和撕裂强度均较高,而硬度、300%模量和冲击弹性差异不大。  相似文献   

14.
以聚醚多元醇和MDI-50为原料,采用预聚物法合成预聚体,再和扩链剂MOCA进行扩链合成聚氨酯弹性体。研究了预聚体中不同异氰酸酯基(—NCO)质量分数对MDI-50型聚氨酯弹性体性能的影响。采用差示扫描量热分析(DSC)、热重分析(TG)、红外光谱(FTIR)及力学性能等测试方法对聚氨酯弹性体的结构与性能进行了表征和分析。结果表明:预聚体反应体系中NCO/OH摩尔比增大,预聚体中—NCO质量分数增加,预聚体的黏度降低,相应的聚氨酯弹性体的硬度和玻璃化转变温度提高,断裂伸长率降低,而拉伸强度和撕裂强度先增加后下降;当NCO/OH摩尔比为2.22时,聚氨酯弹性体力学性能较好;—NCO质量分数对聚氨酯弹性体的热稳定性影响不大。  相似文献   

15.
聚氨酯微孔弹性体,由高活性聚醚多元醇、多异氰酸酯、醇类扩链剂、催化剂等高速混合,一次浇注成型,考察乙二醇用量对聚氨酯微孔弹性体工艺及性能的影响。结果表明,随着扩链剂乙二醇量的增加,聚合反应体系乳白时间和凝胶时间逐渐缩短,聚氨酯微孔弹性体材料密度略有增加,拉伸强度和硬度明显提高,断裂伸长率明显下降。  相似文献   

16.
引入异氰脲酸酯基团可提高聚氨酯弹性体的耐热性能,但同时对其他性能有一定影响。通过改变NCO含量考察异氰脲酸酯基团对聚氨酯弹性体的力学性能及耐溶剂性能的影响。力学性能测试结果表明,其硬度、拉伸强度和撕裂强度均在NCO质量分数为8%时达到极大值,分别为邵A60、10.33MPa和48.84kN/m,扯断伸长率随NCO含量增加单调减小,100%定伸强度单侧增大;耐溶剂实验表明,聚氨酯弹性体在NCO质最分数为8%时耐溶剂性能最好。  相似文献   

17.
丁羟聚氨酯弹性体是以丁羟液体橡胶、扩链剂211(N,N-双(2-羟丙基)苯胺)和甲苯二异氰酸酯(TDI)反应,然后用MOCA固化制备而成。本文讨论了丁羟聚氨酯弹性体的制备和性能,并将丁羟聚氨酯弹性体试件浸入油、水及丙酮试剂中,分别浸泡3、5、10和20d后,测试试件拉伸强度和断裂伸长率。结果表明,丁羟液体橡胶相对分子质量约3500,异氰酸酯基/羟基的物质的量比为5.0时合成的丁羟聚氨酯弹性体的性能优异。  相似文献   

18.
综述了影响丁羟弹性体力学性能的几种关键因素,包括固化参数、固化剂类型、扩链剂类型等,对比了几种提高丁羟弹性体力学性能的方法及其研究进展。提出了通过合成具有不同官能度的窄分子质量分布的丁羟液体橡胶,并进行复配研究,将是制备高拉仲强度、高伸长率丁羟弹性体的研究方向。  相似文献   

19.
以纯4,4′-二苯基甲烷二异氰酸酯(MDI)MDI-100、液化MDI(C-MDI)、MDI-50和四氢呋喃均聚醚(PTMG)为原料合成聚氨酯(PU)预聚体,再分别与KD和KC扩链剂制备PU弹性体。研究了1,3-BDO含量、异氰酸酯类型、预聚体NCO基含量、聚醚软段相对分子质量对PU弹性体力学性能的影响。结果表明,提高1,3-BDO含量可使PU弹性体的硬度、撕裂强度和冲击弹性明显下降;纯MDI弹性体综合力学性能最好,液化MDI次之,MDI-50最差;提高预聚体NCO基含量可使弹性体的硬度、300%定伸应力和撕裂强度明显提高,拉断伸长率和冲击弹性则下降;软段相对分子质量为1000时,PU弹性体的300%定伸应力、拉伸强度和撕裂强度均增加;软段相对分子质量为1800以上,拉断伸长率和冲击弹性增加。  相似文献   

20.
以聚酯二元醇、异氰酸酯、碳纤维为主要原料,采用预聚体法制备了一系列碳纤维/聚氨酯复合材料,并对该复合材料进行了性能测试和结构表征。研究表明,复合材料的机械性能随着碳纤维长度和含量的增加出现先升高后降低的趋势。当碳纤维长度为3 mm、质量分数为1.0%时,复合材料的机械性能达到最佳值,此时其拉伸强度增加22.7%,撕裂强度增加48.1%,扯断伸长率增加5.9%。热力学分析和动态力学性能研究表明,复合材料的热分解温度提高,质量保留率提高,失重率降低,材料的玻璃化转变温度和软化温度提高,引入碳纤维后材料的耐热性提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号