首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李军  罗国华  魏飞 《化工学报》2014,65(7):2426-2436
系统论述了当前主要的脱硝技术、流化催化裂化(FCC)再生工艺及FCC再生过程NOx产生和转化规律。O2是影响催化剂脱硝活性的主要因素,从反应器尺度精确控制烧焦再生反应,严格控制过剩氧含量,是提高脱硝效率的一条可行途径。提出了通过再生器内部结构和工艺设计创造出具有氧化区和还原区多层多区的新型再生工艺脱硝思路。从降低NOx角度考虑,再生温度应不高于700℃,再生烟气中CO浓度不低于4%,O2浓度至少低于1%。这种新的再生器脱硝是一种经济、高效的脱硝技术,已在中石油大港石化FCC工业装置得到了初步验证,为FCC再生装置和其他化工过程脱硝提供了新思路。  相似文献   

2.
The effectiveness of carbons as low-temperature selective catalytic reduction (SCR) catalysts will depend upon their physical and chemical properties. Surface functional groups containing oxygen are closely related to the catalytic activity of carbons. These groups are expected to change the interaction between the carbon surface and the reactants through a variation in adsorption and reaction characteristics. This paper presents a more detailed study of the effects of either gas-phase sulfuric acid or oxygen oxidation treatments on the catalytic NO reduction by low-rank coal-based carbon catalysts. Raw and treated carbons were characterized by N2 and CO2 surface areas, TPD and ash content. NO removal capacity of carbons was determined by passing a flow containing NO, H2O, O2, NH3 and N2 through a fixed bed of carbon at 150°C and 4 s of residence time, the effluent concentration being monitored continuously during the reaction. The effects of varying the type and conditions of the treatment on the physicochemical features of carbons were studied. The gas-phase sulfuric acid treatment (corresponding to a first step SO2 removal) markedly enhanced carbon activities for NO removal. On the contrary, oxygen oxidation enhanced NO removal capacity of chars to a lower extent. Therefore, the carbons studied could be used in a combined SO2/NO removal process, because the use and regeneration of the carbon in the first step is beneficial for the performance in the second one.  相似文献   

3.
柴油机尾气中的炭烟颗粒是城市雾霾的主要来源之一,严重污染环境和危害人体的健康。因此,降低和消除柴油车尾气中的炭烟颗粒具有重要的意义。本文以高锰酸钾和一水柠檬酸为原料,通过自蔓延燃烧法成功制备了一系列锰氧化物催化剂。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、N2吸附-脱附、H2程序升温还原(H2-TPR)、O2程序升温氧化(O2-TPD)和X射线光电子能谱(XPS)等手段对催化剂进行了表征,并考察了该系列催化剂催化炭烟颗粒燃烧的活性。结果表明,制备的锰氧化物催化剂均具有良好的催化燃烧炭烟活性。当高锰酸钾与一水柠檬酸的摩尔比为12∶1、煅烧温度为450℃时,制备的催化剂具有较低的还原峰温度,较大的比表面积和孔径以及化学吸附氧和Mn4+含量,从而表现出最佳催化燃烧炭烟颗粒的性能,其催化燃烧炭烟温度T10T50T90分别为284℃、327℃和360℃。  相似文献   

4.
A series of different transition metals (V, Co, Cr, Mn, Fe, Ni, Cu and Zn) promoted H-ZSM-5 catalysts were prepared by impregnation method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The catalytic activity of these catalysts was evaluated for the selective catalytic reduction (SCR) of NO with NH3 as reductant in the presence of oxygen. The results revealed that the catalytic activity of Cu-ZSM-5 nanocatalyst for NO conversion to N2 was 80% at 300 ℃, which was the best among various promoted metals. Design of experiments (DOEs) with Taguchi method was employed to optimize NH3-SCR process parameters such as NH3/NO ratio, O2 concentration, and gas hourly space velocity (GHSV) over Cu-ZSM-5 nanocatalyst at 250 and 300 ℃. Results showed that the most important parameter in NH3-SCR of NO is O2 concentration; followed by NH3/NO ratio and GHSV has little importance. The NO conversion to N2 of 63.1% and 94.86%was observed at 250 ℃ and 300 ℃, respectively under the obtained optimum conditions.  相似文献   

5.
浸渍法制备15% MnOx/5% WO3/TiO2低温脱硝催化剂,利用原位傅里叶变换红外(in situ FT-IR)设计包括多种吸附反应以及不同预处理方式的微观暂态试验与微观稳态试验,研究其NH3-SCR脱硝反应机理,并推测反应路径。结果表明,催化剂的NH3-SCR反应主要以Eley-Rideal机理方式进行,仅在一定温度条件下可以看到Langmuir-Hinshclwood反应路径。催化剂表面Lewis酸位的NH3吸附是还原剂的主要来源,Brønsted酸位吸附的NH4+随温度上升参与反应的比例略有提高。NH3的吸附活化是整个反应的控制步骤,吸附态NH3更易与NO2发生反应,NO与催化剂表面的相互作用明显弱于NO2。NO会在催化剂表面氧化活性中心形成大量双齿配位型硝酸盐,阻碍NH3的吸附和活化,O2存在条件下促进NH3-SCR反应进行,阻止NO在催化剂表面形成双齿硝酸盐。NO与NH3在催化剂表面存在吸附竞争,NO的吸附作用强于NH3,温度达到100℃后吸附的NH3方可大量活化并与NOx发生进一步反应。  相似文献   

6.
张肖肖 《工业催化》1992,28(9):27-32
将酸碱性不同的载体负载Pd催化剂用于氢气选择催化还原氮氧化物(H2-SCR)研究。在0.091%NO、0.009%NO2、0.5%H2、10%O2以N2为平衡气和气体质量流速(W/F)0.06 g·s·cm-3条件下,碱性载体MgO负载Pd催化剂表现出较好的催化活性,而酸性载体HZSM-5负载Pd催化剂上几乎没有氮氧化物转化。采用BET、CO2-TPD、Py-FTIR、NOx-TPD和反应红外(IR)对载体及其负载Pd催化剂进行比表面积、表面酸碱性、吸附NOx能力以及NOx吸附生成表面物种进行表征。结果表明,载体酸性越弱,碱性越强,其吸附NOx能力较强,催化剂载体表面吸附生成的含氮物种较多,在Pd表面吸附活化生成的H溢流至载体并将含氮物种还原,这是负载Pd催化剂在H2-SCR反应中活性较高的原因。  相似文献   

7.
The selective catalytic reduction of NO by H2 under strongly oxidizing conditions (H2-SCR) in the low-temperature range of 100–200 °C has been studied over Pt supported on a series of metal oxides (e.g., La2O3, MgO, Y2O3, CaO, CeO2, TiO2, SiO2 and MgO-CeO2). The Pt/MgO and Pt/CeO2 solids showed the best catalytic behavior with respect to N2 yield and the widest temperature window of operation compared with the other single metal oxide-supported Pt solids. An optimum 50 wt% MgO-50wt% CeO2 support composition and 0.3 wt% Pt loading (in the 0.1–2.0 wt% range) were found in terms of specific reaction rate of N2 production (mols N2/gcat s). High NO conversions (70–95%) and N2 selectivities (80–85%) were also obtained in the 100–200 °C range at a GHSV of 80,000 h−1 with the lowest 0.1 wt% Pt loading and using a feed stream of 0.25 vol% NO, 1 vol% H2, 5 vol% O2 and He as balance gas. Addition of 5 vol% H2O in the latter feed stream had a positive influence on the catalytic performance and practically no effect on the stability of the 0.1 wt% Pt/MgO-CeO2 during 24 h on reaction stream. Moreover, the latter catalytic system exhibited a high stability in the presence of 25–40 ppm SO2 in the feed stream following a given support pretreatment. N2 selectivity values in the 80–85% range were obtained over the 0.1 wt% Pt/MgO-CeO2 catalyst in the 100–200 °C range in the presence of water and SO2 in the feed stream. The above-mentioned results led to the obtainment of patents for the commercial exploitation of Pt/MgO-CeO2 catalyst towards a new NOx control technology in the low-temperature range of 100–200 °C using H2 as reducing agent. Temperature-programmed desorption (TPD) of NO, and transient titration of the adsorbed surface intermediate NOx species with H2 experiments, following reaction, have revealed important information towards the understanding of basic mechanistic issues of the present catalytic system (e.g., surface coverage, number and location of active NOx intermediate species, NOx spillover).  相似文献   

8.
NH3的气相氧化是低温燃烧过程中NOx(NO和NO2)与N2O的重要来源,为了深入认识其反应规律,在管式流动反应器系统中进行了实验研究。重点考察了挥发分中的可燃气(CO、CH4或H2)和NO对NH3氧化及氮氧化物排放的影响规律,并根据化学反应机理对实验结果进行了分析。研究结果表明,低温氧化性气氛下微量的可燃气就能够显著促进NH3的氧化,并使NOx和N2O的生成量大幅度升高。当可燃气体浓度相同时,H2对NH3氧化的影响最大,CO的影响最小,CH4对NH3氧化的影响略大于CO。随着可燃气体浓度的升高,其对NH3氧化与氮氧化物生成的影响先逐渐增加,然后趋于稳定。反应初始气体中存在NO时,也会加速NH3的氧化。  相似文献   

9.
周易  邓文义  苏亚欣 《化工进展》2021,40(2):859-869
针对常温、含高浓度O2 的NO污染气体排放控制,典型的选择性催化还原(SCR)技术已不再适用。以碳基活性材料为催化剂的NO常温催化氧化技术得到了广泛关注,该技术在常温和高浓度O2条件下将NO氧化为NO2,并以硝酸或硝酸盐形式加以回收利用,因此具有环保和经济双重效益,应用前景广阔。本文简要综述了碳基活性材料常温催化氧化NO的研究进展,阐述了NO催化氧化机理,介绍了碳基活性材料的表面物化特性和反应条件(O2浓度、NO浓度、GHSV、反应温度、水蒸气和催化剂粒径等)对催化氧化NO的影响,以及活性炭、活性炭纤维、碳纳米纤维、炭干凝胶、金属负载碳基活性材料、炭化污泥等不同碳基活性材料的催化特性,总结并展望了未来碳基活性材料低温催化氧化NO的发展方向。  相似文献   

10.
Carbon-based SCR catalysts for the reduction of NO with NH3 at low temperatures have been prepared using activated carbons obtained from a local Spanish coal, doped with several vanadium compounds. Among them, the ashes of a petroleum coke (PCA) were also employed. Both the catalysts and the carbon supports have been characterized by means of N2 and CO2 physisorption, NH3 and O2 chemisorption and temperature programmed desorption (TPD). The activity of the catalysts has been tested in a laboratory-scale unit, measuring significant conversions of NO (above 50%) with almost 100% selectivity toward N2 at 150 °C. The feasibility of using the petroleum coke ashes as the active phase was confirmed comparing the activity of the catalysts doped with these residues, with the one measured for the catalysts prepared using model vanadium compounds. The physical–chemical features of the carbon support resulted of key importance for achieving a considerable catalytic activity. The values of apparent energy of activation calculated for the catalysts presented in this paper were very similar to other carbon-based catalysts and smaller than the ones corresponding to TiO2-supported systems. The gas residence time on the catalytic bed influences the catalytic activity to a great extent, thus being a determinant parameter for designing the SCR de-NOx unit. To avoid ammonia slip, inlet concentrations of NH3 has to be little under the stoichometric NH3/NO ratio (0.7). The catalysts stability was tested in terms of carbon support gasification followed by termogravimetric analysis and gas chromatography. The activity of the catalysts was maintained at least over 24 h of reaction.  相似文献   

11.
Activated carbon was tested as metal-free catalyst for hydrochlorination of acetylene in order to circumvent the problem of environment pollution caused by mercury and high cost by noble metals. Oxygen-doped and nitrogen-doped activated carbons were prepared and characterized by XPS, TPD and N2 physisorption methods.The influences of the surface functional groups on the catalytic performance were discussed base on these results.Among all the samples tested, a nitrogen-doped sample, AC-n-U500, exhibited the best performance, the acetylene conversion being 92% and vinyl chloride selectivity above 99% at 240 °C and C2H2 hourly space velocity30 h-1. Moreover, the AC-n-U500 catalyst exhibited a stable performance during a 200 h test with a conversion of acetylene higher than 76% at 210 °C at a C2H2 hourly space velocity 50 h-1. In contrary, oxygen-doped catalyst had lower catalytic activities. A linear relationship between the amount of pyrrolic-N and quaternary-N species and the catalytic activity was observed, indicating that these nitrogen-doped species might be the active sites and the key in tuning the catalytic performance. It is also found that the introduction of nitrogen species into the sample could significantly increase the adsorption amount of acetylene. The deactivation of nitrogendoped activated carbon might be caused by the decrease of the accessibility to or the total amount of active sites.  相似文献   

12.
姚彦虎  杨晨  张兵  吴永红  王同华 《化工学报》2021,72(8):4418-4424
以聚酰亚胺为前体,TiO2溶胶为掺杂剂,经成膜和炭化制得杂化炭膜。采用热失重、电子显微镜、X-射线衍射、红外光谱和渗透法对前体的热性能、炭膜的微观形貌、微结构、表面官能团和气体分离性进行了表征。考察了TiO2溶胶用量、渗透温度和渗透压力对炭膜的结构与性能影响。结果显示,掺杂TiO2溶胶显著提高了最终炭膜渗透性和选择性;采用TiO2溶胶量为10%前体所制备的杂化炭膜对H2、CO2、O2渗透性分别为1993.8、1555.6、266.9 Barrer,同时H2/N2、CO2/N2、O2/N2选择性分别为93.6、73.0、12.5。  相似文献   

13.
简述了不同反应物组合在碳材料表面的行为特征,单组分NO可以形成吸附态的NO2、二聚体(NO)2、—NO2或吡啶类的化合物;O2存在时NO被吸附态的氧氧化成NO2;NO、O2和NH3同时存在时,反应发生在吸附态的NH3和吸附态的NO2之间。着重详述了活性碳纤维(activated carbon fibers,ACF)催化剂上的选择性催化还原(selective catalytic reduction,SCR)NO的机理为:低温时以NH3为还原剂的SCR(NH3-SCR)遵循Langmuir-Hinshelwood机理,较高温度时NH3-SCR 遵循Eley-Rideal机理;分析指出了催化剂孔结构特征和表面化学官能团是ACF能低温选择性催化还原NO的主要影响因素。  相似文献   

14.
Nitrogen oxides are one of the most significant pollution sources during coal combustion. This experimental study was conducted in a 15 kWthlab-scale pressurized fluidized bed(inner diameter = 81–100 mm, H =2100 mm) firing with bituminous coals. The effects of operating parameters, including bed temperature(800 ℃–900 ℃), operating pressure(0.1–0.4 MPa), excess air level(16%–30%) and flow pattern on NOx and N_2 O emissions were systematically studied during the tests. During each test the interaction effects of all the operating parameters were properly controlled. The results show that most operating parameters have an opposite effect on NOxand N_2 O emissions, and the N_2 O emissions mainly depend on the bed temperature. Increasing the operating pressure can significantly suppress the fuel-N conversion to NOxbut enhance its conversion to N_2 O. With the rise of the excess air level and fluidization number, NOxemissions grow distinctly while N_2 O emissions remain almost unchanged. Total nitrogen oxide emissions increase with the bed temperature while decrease with the operating pressure.  相似文献   

15.
糠醛渣的能源化利用是糠醛产业清洁生产和碳减排的有效途径。然而,现有的直接燃烧利用常面临着因糠醛渣高K引起的灰分烧结严重、高S导致的SOx排放量大和高水含量导致的燃烧效率低等难题。基于此,在管式炉中考察了单一气氛(N2、CO2、O2)和混合气氛(N2+H2O、CO2+H2O、O2+H2O)中糠醛渣灰在不同温度下的烧结特性,并对灰分颜色、收缩率、微观形貌、矿物质成分和K/S释放等特性进行系统分析。灰分热收缩行为显示,随温度升高,灰样收缩率增加;在单一气氛中添加水蒸气能促进灰分烧结。SEM分析发现,在灰分烧结前,其微观结构在低温下已出现熔融和结渣。XRD分析表明,灰分烧结与低熔点矿物生成紧密相关。单一气氛中,高温下N2促进钾长石生成;CO2抑制钾长石生成;O2促进钙铝黄长石和透辉石生成。在混合气氛中,水蒸气的出现促进多种低熔点钾铝硅酸盐生成,如钾长石和白榴石等。XRF分析显示,随温度升高,灰样中K的固留率(GK)和S的固留率(GS)降低;在考察的单一气氛中,高温时,N2GK最低;GS受气氛的影响较小。在考察的复合气氛中,高温时,GK受气氛影响较小;GS受气氛影响严重,特别地,O2+H2O气氛中GS最高,S逸散最少。为抑制糠醛渣灰分烧结和K/S元素逸散到气相中,糠醛渣在流化床燃烧过程中应控制运行温度(低于900℃)、降低气氛中N2的含量。  相似文献   

16.
The steady-and unsteady-state catalytic behaviour of Cu-MFI in the conversion of propane and NO in the presence of O2 is reported, showing how the chemisorption and transformation of reactants may influence the surface reactivity. Various effects were observed: (i) a change in the surface reactivity and kinetics in going from low to high concentrations of NO or propane, (ii) the transformation of NO to N2 and N2O promoted at low temperature (250°C) by oxygen in the absence of hydrocarbon, (iii) the influence of NO over the surface reactivity of the catalyst in the conversion of propane and (iv) the influence of surface precoverage with oxidized nitrogen oxides (NxOy) or carboxylate species on the catalyst transient reactivity in the reduction of NO to N2. In particular, Cu-MFI is initially more active when oxidized nitrogen oxides are present, suggesting that the active intermediate in the reduction of NO with propane is a complex formed by the reaction of nitrate with activated hydrocarbon. It is shown, however, that strongly bound oxidized nitrogen oxides may have also additional effects on the surface reactivity: (i) can promote the conversion of NO to N2 and N2O in transient conditions and (ii) can give a partial inhibition of the surface reactivity blocking copper ions due to their strong chemisorption. Furthermore, it is shown that NO reacts faster with oxygen than hydrocarbon forming NxOy species which are then the oxidizing agent for the hydrocarbon. It is thus suggested that the surface reactivity of Cu-MFI in the reduction of NO with propane/oxygen depends on the surface population of nitrogen oxide adspecies which influence not only the surface reactivity, but also the pathway of hydrocarbon oxidation.  相似文献   

17.
V2O5-WO3-MoO3/TiO2催化剂在柴油机NH3-SCR系统中的性能   总被引:1,自引:0,他引:1       下载免费PDF全文
高岩  栾涛  彭吉伟  XU Hongming 《化工学报》2013,64(9):3356-3366
针对柴油机运行工况特点及柴油机尾气成分特点,以工业纯锐钛型二氧化钛、偏钒酸铵、偏钨酸铵、钼酸铵为主要原料制备了颗粒状V2O5-WO3-MoO3/TiO2催化剂,以Lister Petter TR1重型直喷式单缸柴油机为依托搭建试验台,研究了在真实柴油机尾气环境下催化剂的脱硝性能。结果表明,柴油机负载增大,催化剂脱硝活性呈现下降趋势。1800 r·min-1时,脱硝活性最大值87.1%在负载25%、反应温度380℃、空速20000 h-1、氨氮比1.0处取得。柴油机负载不同,导致催化剂活性温度窗口(脱硝活性>70%)发生较大变化,与负载25%相比,负载50%活性温度窗口减小约60℃。增大柴油机负载可以提高NH3/N2O反应起始温度,但是同时会导致高温区间(>400℃)N2O生成量增大。  相似文献   

18.
Activated carbon with high specific surface area and considerable mesopores was prepared from bamboo scraps by phosphoric acid activation. The effect of activation conditions was studied. Under the conditions of impregnating bamboo with 80% H3PO4 at 80°C for 9 days and activation at 500°C for 4 h, the prepared activated carbon had the highest mesopore volume of 0.67 cm3/g, a specific surface area of 1567 m2/g, and the mesopore ratio reached 47.18%. The study on adsorption isotherms of CH4, CO2, N2 and O2 on the activated carbon were carried out at 298 K. The considerable difference in the adsorption capacity between CO2 and the other gases was observed, which would be of interest for the adsorptive separation/purification of gaseous CO2 from its mixtures, especially from mixtures with N2 and/or O2.  相似文献   

19.
以CO2为活化气氛,通过一步快速热解活化法从黑山煤粉与生物质混合物中制取活性炭。讨论了不同质量比率、活化温度和CO2浓度对活性炭比表面积的影响。通过N2吸附(BET)、扫描电镜(SEM)、拉曼光谱(Raman)和红外光谱(FTIR)对活性炭的性能进行了表征。确定了制备活性炭的最佳条件为活化温度900℃、质量比1、CO2体积分数30%、活化时间120min时,活性炭的比表面积和孔容最大,分别为901m2/g和0.39cm3/g。最后,用乙酸乙酯吸附量验证了其吸附性能,最大累积吸附量为766.51mg/g。  相似文献   

20.
张放  傅吉全 《工业催化》2016,24(3):54-57
以工业酚醛树脂为碳源,三嵌段聚合物F127为模板剂,制备碳分子筛。采用N_2吸附-脱附对制备的碳分子筛进行表征,研究炭化制备工艺对碳分子筛孔径分布的影响。结果表明,炭化温度、炭化时间和炭化升温速率对碳分子筛孔径分布影响较大。在炭化升温速率为1℃·min~(-1)、炭化温度800℃和炭化时间1 h条件下制备的碳分子筛孔径分布最为集中,BET比表面积716.59 m~2·g~(-1),单点总孔容0.557 75 cm~3·g~(-1),单点吸附微孔孔容0.301 81 cm~3·g~(-1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号