首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
SO2 and NO are the main precursors for acid precipitation. Experimental studies on desulfurization and denitrification were carried out using microwave irradiation over activated carbon carried catalyst. The results show that adsorption capacities and removal efficiencies of activated carbon carried Cu‐based catalyst were higher than Mn‐based or Zn‐based ones. The adsorption capacity of SO2 improved with the increasing moisture in flue gas, but the adsorption capacity of NO had a peak at 6.23 mg g–1 and then began to drop. The desulfurization efficiency increased with O2 content in flue gas, but no noticeable change of denitrification efficiency was observed from the experimental data. The desulfurization efficiency descended with the increase of moisture in flue gas, while the denitrification efficiency augmented earlier and reached a plateau later with the addition of the water steam. In addition, characterization of activated carbon confirmed that the main active component of Cu‐based catalyst is CuO.  相似文献   

2.
Parametric experiments were carried out to study the interactions of mercury, SO3, and injected activated carbon (AC) in a coal flue gas stream. The levels of SO3 vapor in flue gas were altered by individually varying flue gas temperature, moisture, or sodium fume injection in the flue gas. Meanwhile, mercury emissions with AC injection (ACI) upstream of an electrostatic precipitator (ESP) were evaluated under varied SO3 concentrations. SO3 measurements using a condensation method indicated that low temperature, high moisture content, and sodium fume injection in flue gas shifted SO3 partitioning from the vapor to particulate phase, subsequently improving mercury capture with ACI. 0.08 g/m3 of DARCO® Hg-LH injection only provided approximately 20% mercury reduction across the ESP in a bituminous coal flue gas containing 28 ppm SO3, but mercury capture was increased to 80% when the SO3 vapor concentration was lowered less than 2 ppm. Experimental data clearly demonstrate that elevated SO3 vapor is the key factor that impedes mercury adsorption on AC, mainly because SO3 directly competes against mercury for the same binding sites and overwhelmingly consumes all binding sites.  相似文献   

3.
The modeling and optimal design/operation of gas membranes for postcombustion carbon capture (PCC) is presented. A systematic methodology is presented for analysis of membrane systems considering multicomponent flue gas with CO2 as target component. Simplifying assumptions is avoided by namely multicomponent flue gas represented by CO2/N2 binary mixture or considering the co/countercurrent flow pattern of hollow‐fiber membrane system as mixed flow. Optimal regions of flue gas pressures and membrane area were found within which a technoeconomical process system design could be carried out. High selectivity was found to not necessarily have notable impact on PCC membrane performance, rather, a medium selectivity combined with medium or high permeance could be more advantageous. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

4.
Paolo Davini 《Carbon》2002,40(11):1973-1979
The treatment of the solid particulates derived from the combustion of heavy oils (that is, oil-fired fly ash) with acidic solutions (HCl and HF) followed by activation at 900 °C with CO2 and then with O2 (1%) in N2 at 800 °C, produces activated carbon having high surface area values (measured both by N2 adsorption at 77 K and by CO2 adsorption at 273 K) and surface basic characteristics. This carbon appears to be suitable for SO2 and NOX adsorption and hence for industrial flue gas treatment processes. By submitting the activated carbon thus obtained to some adsorption/desorption cycles of gaseous mixtures having a similar composition to that of flue gases, its general characteristics (surface areas, sorbent properties etc.) change as expected of a typical activated carbon. Based on the results obtained, these particulate materials, produced in large amounts by heavy oil combustion, are assumed to be fully exploitable for flue gas treatment.  相似文献   

5.
焙烧是炭素制品生产过程的重要工序,焙烧炉烟气是炭素工业大气污染治理的重点,其排放的烟气量大,污染物浓度高。针对炭素焙烧产生的烟气特性和烟气多污染物深度净化、超低排放的技术要求,开发出了国内第一套炭素行业焙烧炉烟气脱硫、脱硝和湿法电除尘装置,取得了良好的净化效果,实现了炭素工业焙烧烟气的超低排放。  相似文献   

6.
Activated carbon-supported copper, iron, or vanadium oxide catalysts were exposed to incineration flue gas to investigate the simultaneous catalytic oxidation of sulfur dioxide/hydrogen chloride and selective catalytic reduction of nitrogen oxide by carbon monoxide. The results show that AC-supported catalysts exhibit higher activities for SO2 and HCl oxidation than traditional γ-Al2O3-supported catalysts and the iron and vanadium catalysts act as catalysts instead of sorbents, and can decompose sulfate with evolution of SO3 and then regenerate for more SO2 adsorption to take place. The AC-supported catalysts also display a high activity for NO reduction with CO generated from a flue gas incineration process and the presence of SO2 in the incineration flue gas can significantly promote catalytic activity. Using CO as the reducing agent for NO reduction is more effective than using NH3, because NH3 may be partially oxidized in the presence of excess O2 (12 vol%. in the incineration flue gas used) to form N2, which can decrease the overall extent of NO reduction.  相似文献   

7.
It is expected that the simultaneous removal of acid gases and particles from flue gas, using a single process and at the same temperature, will become an economical, and thus, desirable option. Accordingly, this study investigates the potential for the utilization of a fluidized-bed adsorbent/catalyst reactor for the simultaneous removal of SO2 and fly ash from simulated flue gas. The operating conditions for the evaluation include: (1) different pre-treatments of the adsorbent/catalyst, (2) the operating parameters of adsorption/filtration and (3) the effects of simultaneous adsorption/filtration through the fluidized-bed reactor. Based on the experimental data gathered, the Brönsted acid sites were formed on the surface of activated carbon (AC) support materials after modification with nitric or sulfuric acid and it acted as anchor. This characteristic accounts for the promotion of the effects of dispersion and adsorption of the adsorbent/catalyst. Moreover, the addition of copper facilitated the oxygen transfer of SO2 to the carbon matrix. The concentration of SO2 removed by the fluidized-bed adsorbent/catalyst reactor decreased from 17.9 to 14.2 mg SO2/g of adsorbent after exposure to a high concentration of fly ash. Therefore, an acid-pre-treatment of the adsorbent/catalyst is required to hasten the removal of SO2 in the simulated flue gas. Our result shows that the acidic groups may facilitate the adsorbent/catalyst removal of SO2 when there exist high concentrations of fly ash in the flue gas.  相似文献   

8.
烧结烟气氮氧化物(NOx)排放占钢铁行业NOx排放总量的50%以上,随着环保法规的日益严格,现有及新建烧结机只有装设烟气脱硝装置才能满足排放法规的NOx排放要求。而活性炭微孔丰富、比表面积大、吸附能力强,低温时即可同时脱除烟气中的SO2, NOx、粉尘及其他有害气体。因此,低温烧结烟气活性炭脱硝具有显著的特点及技术优势,但活性炭脱硝易受烟气中SO2和H2O的影响。本工作综述了低温烟气活性炭脱硝机理,主要包括物理吸附、化学吸附及选择性催化还原反应。烟气中氧气的存在起氧化作用,能有效提高活性炭的脱硝率;而SO2, H2O和NO存在竞争吸附作用会降低活性炭的脱硝性能,详述了SO2和H2O对活性炭脱硝的抑制作用及影响。阐述了活性炭负载过渡金属、稀土金属等金属氧化物化学改性对脱硝性能的促进作用及其脱硝机理,并对多元金属的负载进行了介绍;最后对烧结烟气活性炭低温脱硝技术进行了展望。  相似文献   

9.
Past research with high temperature molten carbonate electrochemical cells has shown that carbon dioxide can be separated from flue gas streams produced by pulverized coal combustion for power generation. However, the presence of trace contaminants, i.e., sulfur dioxide and nitric oxides, will impact the electrolyte within the cell. If a lower temperature cell could be devised that would utilize the benefits of commercially-available, upstream desulfurization and denitrification in the power plant, then this CO2 separation technique can approach more viability in the carbon sequestration area. Recent work has led to the assembly and successful operation of a low temperature electrochemical cell. In the proof-of-concept testing with this cell, an anion exchange membrane was sandwiched between gas-diffusion electrodes consisting of nickel-based anode electrocatalysts on carbon paper. When a potential was applied across the cell and a mixture of oxygen and carbon dioxide was flowed over the wetted electrolyte on the cathode side, a stream of CO2 to O2 was produced on the anode side, suggesting that carbonate/bicarbonate ions are the CO2 carrier in the membrane. Since a mixture of CO2 and O2 is produced, the possibility exists to use this stream in oxy-firing of additional fuel.From this research, a novel concept for efficiently producing a carbon dioxide rich effluent from combustion of a fossil fuel was proposed. Carbon dioxide and oxygen are captured from the flue gas of a fossil-fuel combustor by one or more electrochemical cells or cell stacks. The separated stream is then transferred to an oxy-fired combustor which uses the gas stream for ancillary combustion, ultimately resulting in an effluent rich in carbon dioxide. A portion of the resulting flow produced by the oxy-fired combustor may be continuously recycled back into the oxy-fired combustor for temperature control and an optimal carbon dioxide rich effluent.  相似文献   

10.
He Lin  Xiang Gao  Kefa Cen  Zhen Huang 《Fuel》2004,83(9):1251-1255
This paper researches on the reduction of NOx (DeNOx) from wet flue gas by a DC corona radical shower system. The experimental results show that the water vapor in the flue gas not only reduces the corona but also reduces the discharge current. The DeNOx efficiency and the quantity of NOx removal per unit energy can be enhanced by raising the concentration of water vapor in the flue gas properly and the maximum quantity of NOx removal per unit energy is more than 25.5 g as the humidity of the flue gas ranges from 10 to 12%. The longer the flue gas resides in the reactor, the higher the DeNOx efficiency is and the lesser NOx will be reduced by per unit power.  相似文献   

11.
The wide implementation of low-NOx combustion technologies in pulverized coal combustion can lead to higher levels of carbon in fly ash and increase the adsorptivity toward surfactants of the carbon. Consequently, the air entraining agent (AEA) requirements of the fly ash used for concrete production increases, which can complicate the stabilization of entrained air. In this study, a low-NOx tangential fired 875 MWth power plant burning bituminous coal have been operated under extreme conditions in order to test the impact of the operating conditions on fly ash adsorption behavior and NOx formation. It was found that the AEA adsorption of the fly ash was reduced up to five times compared to reference operation, when the plant was operated with minimum furnace air staging, three levels of burners instead of four and without recycled flue gas. The lower AEA requirements of the fly ash at these conditions were primarily caused by a reduction in total carbon content, while the AEA adsorptivity of the residual carbon was lowered to about 60% of reference value. The tested operation mode, however, increased the NOx level in the flue gas before the DeNOx plant by 60% compared to reference operation.  相似文献   

12.
Jyh-Cherng Chen  Jian-Sheng Huang 《Fuel》2007,86(17-18):2824-2832
For mitigating the emission of greenhouse gas CO2 from general air combustion systems, a clean combustion technology O2/RFG is in development. The O2/RFG combustion technology can significantly enhance the CO2 concentration in the flue gas; however, using almost pure oxygen or pure CO2 as feed gas is uneconomic and impractical. As a result, this study proposes a modified O2/RFG combustion technology in which the minimum pure oxygen is mixed with the recycled flue gas and air to serve as the feed gas. The effects of different feed gas compositions and ratios of recycled flue gas on the emission characteristics of CO2, CO and NOx during the plastics incineration are investigated by theoretical and experimental approaches.Theoretical calculations were carried out by a thermodynamic equilibrium program and the results indicated that the emissions of CO2 were increased with the O2 concentrations in the feed gas and the ratios of recycled flue gas increased. Experimental results did not have the same trends with theoretical calculations. The best feed gas composition of the modified O2/RFG combustion was 40% O2 + 60% N2 and the best ratio of recycled flue gas was 15%. As the O2 concentration in feed gas and the ratio of recycled flue gas increased, the total flow rates and pressures of feed gas reduced. The mixing of solid waste and feed gas was incomplete and the formation of CO2 decreased. Moreover, the emission of CO was decreased as the O2 concentration in feed gas and the ratio of recycled flue gas increased. The emission of NOx gradually increased with rising the ratio of recycled flue gas at lower O2 concentration (<40%) but decreased at higher O2 concentration (>60%).  相似文献   

13.
The scientific community is currently examining potential approaches in order to reduce the anthropical contributions to global warming. One approach is carbon capture and its storage, i.e., capturing CO2 at its source and storing it indefinitely to avoid its release into the atmosphere. Conversion of CO2 by microalgae or cyanobacteria is a sequestration option. Here, the application of an air‐lift reactor to flue gas treatment using cyanobacteria for the absorption of CO2 was investigated, with the simultaneous abatement of NOx. A Spirulina platensis culture was fed with CO2 and NOx, simulating a flue gas. The preliminary test yielded positive indications on the process feasibility, both in terms of cell productivity (86.8 mg L–1d–1) and CO2 abatement (229 mg d–1). Opportune dosages of flue gas used in fed‐batch test achieved a high abatement of CO2 (407 mg d–1), 90.0 % removal of NOx, and a biomass production of 188.7 mg L–1d–1.  相似文献   

14.
Coal combustion continues to be a major source of energy throughout the world and is the leading contributor to anthropogenic mercury emissions. Effective control of these emissions requires a good understanding of how other flue gas constituents such as sulfur dioxide (SO2) and sulfur trioxide (SO3) may interfere in the removal process. Most of the current literature suggests that SO2 hinders elemental mercury (Hg0) oxidation by scavenging oxidizing species such as chlorine (Cl2) and reduces the overall efficiency of mercury capture, while there is evidence to suggest that SO2 with oxygen (O2) enhances Hg0 oxidation by promoting Cl2 formation below 100 °C. However, studies in which SO2 was shown to have a positive correlation with Hg0 oxidation in full-scale utilities indicate that these interactions may be heavily dependent on operating conditions, particularly chlorine content of the coal and temperature. While bench-scale studies explicitly targeting SO3 are scarce, the general consensus among full-scale coal-fired utilities is that its presence in flue gas has a strong negative correlation with mercury capture efficiency. The exact reason behind this observed correlation is not completely clear, however. While SO3 is an inevitable product of SO2 oxidation by O2, a reaction that hinders Hg0 oxidation, it readily reacts with water vapor, forms sulfuric acid (H2SO4) at the surface of carbon, and physically blocks active sites of carbon. On the other hand, H2SO4 on carbon surfaces may increase mercury capacity either through the creation of oxidation sites on the carbon surface or through a direct reaction of mercury with the acid. However, neither of these beneficial impacts is expected to be of practical significance for an activated carbon injection system in a real coal-fired utility flue gas.  相似文献   

15.
Accumulation of greenhouse gases in the atmosphere is responsible for increased global warming of our planet. The increasing concentration of carbon dioxide mainly from flue gas, automobile and landfill gas (LFG) emissions are major contributors to this problem. In this work, CO2, CH4 and N2 adsorption was studied on Ceca 13X zeolite by determining pure and binary mixture isotherms using a constant volume method and a concentration pulse chromatographic technique at 40 and 100°C. The experimental data were then compared to the predicted binary behaviour by extended Langmuir model. Results showed that the extended Langmuir theoretical adsorption model can only be applied as an approximation to predict the experimental binary behaviour for the systems studied. Equilibrium phase diagrams were obtained from the experimental binary isotherms. For these systems, the integral thermodynamic consistency tests were also conducted. It was found that Ceca 13X exhibits large CO2/CH4 and CO2/N2 selectivity and could find application in landfill gas purification, CO2 removal from natural gas and CO2 removal from ambient air or flue gas streams. © 2011 Canadian Society for Chemical Engineering  相似文献   

16.
烟气脱硫脱硝技术是燃煤电厂烟气污染物控制的主流技术,其中生物质活性炭烟气脱硫脱硝以其新颖、高效、经济、资源化的特点成为近年来的研究热点。生物质活性炭烟气脱硫技术以吸附脱硫为主;生物质活性炭烟气脱硝技术根据烟气温度窗口划分为低温吸附脱硝(包括NO吸附与NO氧化吸附)、中温NH3-SCR脱硝技术及高温异相还原脱硝技术。综述了孔隙结构、表面化学性质、表面改性等因素对生物质活性炭脱硫脱硝性能的影响,总结了提高生物质活性炭脱硫脱硝性能的途径与方法。最后指出,生物质活性炭异相还原脱硝反应建立更为通用的动力学模型、NH3-SCR脱硝技术中生物质活性炭催化剂效率的进一步提升、生物质活性炭脱硫脱硝制备生物缓释肥、生物质活性炭改性与担载催化剂实现多污染物一体化脱除等方向可做深入探索与研究。  相似文献   

17.
The paper takes into consideration a new approach for CO2 capture and transport, based on the formation of solid CO2 hydrates.Carbon dioxide sequestration from power plants can take advantage of the properties of gas hydrates. The formation and decomposition of hydrates from various N2-CO2 mixtures has been studied experimentally in a 2 l reactor, to determine the CO2 separation in terms of hydrate composition and residual CO2 content in the reacted gas.Carbon dioxide acts as a co-former for the production of hydrates containing nitrogen, besides CO2. The mixed hydrates that are obtained are less stable than simple CO2 hydrates. When CO2 content in the flue gas is higher than 30% by volume, the hydrates formed at 5 MPa are sufficiently concentrated (about 70% CO2) and carbon dioxide reduction in the reacted gas is acceptable.The application of a process based on hydrate formation could be especially interesting (for CO2 capture and transport) when connected to an oxy-coal combustion process; in this case the CO2 content in the flue gas is very high and the hydrate formation is greatly facilitated.  相似文献   

18.
活性炭吸附法因技术成熟、简单易行、吸附效率高等优点而被广泛应用于挥发性有机化合物(VOCs)的处理中。本文以山林废弃物的野山桃核为原料,烟道废气及硝酸铁为活化剂,制备了一系列生物质活性炭,并利用固定床吸附装置对其吸附、再生性能进行了研究。利用二氧化碳和水蒸气模拟烟气,在固定流量的烟气活化氛围中进行活化,并探讨了不同硝酸铁的量对活性炭的孔隙结构及其吸附再生性能的影响。利用N2 吸附-脱附实验、扫描电镜、拉曼光谱和红外光谱等技术研究了活性炭详细特征。结果表明:当硝酸铁的质量分数为0.2% 时,所制备的活性炭AC-3具有最大的比表面积和平均孔径,分别为923m2/g及2.57nm。其对乙酸乙酯的饱和吸附量也最大,为973.04mg/g。利用烟气对AC-3活性炭进行活化再生处理,经过3次重复吸附-解吸再生实验,其饱和吸附能力仍可达91.5%以上,实现了废弃烟气资源化利用及活性炭的循环回收,从而达到废气治理的目标。  相似文献   

19.
Amine absorption processes are widely used to purify both refinery and process gases and natural gas. Recently, amine absorption has also been considered for application to CO2 removal from flue gases. It has a number of advantages, but there is one major disadvantage-high energy consumption. This can be solved by using an appropriate solvent. From a group of several dozen solutions, seven amine solvents based on primary amine, tertiary amine and sterically hindered amine were selected. For the selected solutions research was conducted on CO2 absorption capacity, an absorption rate and finally a solvent vapor pressure. Furthermore, tests on an absorber-desorber system were also performed. In this study the most appropriate solvent for capturing CO2 from flue gases with higher carbon dioxide concentrations was selected.  相似文献   

20.
A. Abad  T. Mattisson  A. Lyngfelt  M. Rydén 《Fuel》2006,85(9):1174-1185
Chemical-looping combustion (CLC) is a method for the combustion of fuel gas with inherent separation of carbon dioxide. This technique involves the use of two interconnected reactors. A solid oxygen carrier reacts with the oxygen in air in the air reactor and is then transferred to the fuel reactor, where the fuel gas is oxidized to carbon dioxide and water by the oxygen carrier. Fuel gas and air are never mixed and pure CO2 can easily be obtained from the flue gas exit. The oxygen carrier is recycled between both reactors in a regenerative process. This paper presents the results from a continuously operating laboratory CLC unit, consisting of two interconnected fluidized beds. The feasibility of the use of a manganese-based oxygen carrier supported on magnesium stabilized zirconia was tested in this work. Natural gas or syngas was used as fuel in the fuel reactor. Fuel flow and air flow was varied, the thermal power was between 100 and 300 W, and the air ratio was between 1.1 and 5.0. Tests were performed at four temperatures: 1073, 1123, 1173 and 1223 K. The prototype was successfully operated at all conditions with no signs of agglomeration or deactivation of the oxygen carrier. The same particles were used during 70 h of combustion and the mass loss was 0.038% per hour, although the main quantity was lost in the first hour of operation. In the combustion tests with natural gas, methane was detected in the exit flue gases, while CO and H2 were maintained at low concentrations. Higher temperature or lower fuel flows increases the combustion efficiency, which ranged from 0.88 to 0.99. On the other hand, the combustion of syngas was complete for all experimental conditions, with no CO or H2 present in the gas from the fuel reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号