首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 171 毫秒
1.
将金属铝粉、纳米Al2O3粉引入基础陶瓷结合剂,通过红外光谱分析陶瓷结合剂玻璃结构,X射线衍射表征其物相变化,并测试其耐火度,利用扫描电镜分析陶瓷结合剂立方氮化硼(CBN)复合材料的微观结构,并测试抗折强度,系统分析了金属铝粉、纳米Al2O3粉的单掺及复掺对陶瓷结合剂性能的影响。结果表明,金属铝粉使陶瓷结合剂耐火度升高,玻璃结构没有明显改变,部分铝粉转变为Al2O3,添加金属铝粉的陶瓷结合剂CBN复合材料抗折强度随烧结温度升高而提高。纳米Al2O3粉使陶瓷结合剂耐火度降低,呈玻璃相,但有少量Al2SiO5晶体和LixAlxSi3-xO6晶体析出,添加纳米Al2O3粉的陶瓷结合剂CBN复合材料烧结温度720 ℃时出现较高抗折强度,达93.7 MPa。金属铝粉和纳米Al2O3粉的复掺有利于玻璃网络结构的键合,陶瓷结合剂以玻璃相为主,也有少量晶体析出,二者复掺对提高陶瓷结合剂CBN复合材料抗折强度更有优势,但烧结温度也相应升高,烧结温度740 ℃时抗折强度达最高值,为97.4 MPa。  相似文献   

2.
海韵  徐博  殷先印  朱宝京  韩滨  祖成奎 《硅酸盐通报》2022,41(11):3997-4002
PbO-CaO-B2O3-SiO2系玻璃粉体是耐高过载低温共烧陶瓷(LTCC)生瓷带的主要组成部分。玻璃粉体的析晶行为影响烧结性能,进而决定基板的使用性能。本文研究了Al2O3含量对PbO-CaO-B2O3-SiO2系玻璃析晶行为与烧结性能的影响。结果表明:向PbO-CaO-B2O3-SiO2系玻璃中引入Al2O3可抑制玻璃析晶,防止高膨胀晶相的析出,并提高玻璃烧结密度;不含Al2O3的PbO-CaO-B2O3-SiO2玻璃粉体析晶峰温度为862 ℃,烧结过程中析出方石英晶相,20~200 ℃的平均线膨胀系数高达260.8×10-7-1;引入2.1%(质量分数)Al2O3可显著抑制玻璃析晶,700 ℃烧结后膨胀系数降低至72.9×10-7-1,介电常数显著增大,由6.30提高至7.02。  相似文献   

3.
张盼  张芩宇  姜宏  马艳平 《硅酸盐通报》2021,40(5):1685-1691
以Na2O-B2O3-SiO2低膨胀玻璃为基础玻璃体系,用B2O3逐步取代SiO2,采用高温熔融法制备出低膨胀硼硅酸盐玻璃。通过红外光谱、扫描电镜分析了玻璃微观结构,X射线光电子能谱分析了桥氧和非桥氧含量,研究了B2O3含量对硼硅酸盐玻璃机械性能、热膨胀性能和紫外-可见光透过率的影响。结果表明:B2O3含量的增加使玻璃结构中的[BO3]增多,玻璃分相逐渐加重;该体系玻璃的机械性能良好,显微硬度达802 kg/mm2,抗折强度达147 MPa;转变温度和软化温度都逐渐降低,热膨胀系数逐渐增加;玻璃样品的可见光透过率在90%左右,无明显规律,[BO3]增多,玻璃结构中非桥氧的含量增加,玻璃的紫外-可见光透过率逐渐降低。  相似文献   

4.
采用熔融-淬冷法制备了不同(Al2O3+P2O5)含量的碱铝硅酸盐玻璃,通过拉曼光谱、X射线衍射光谱、扫描电镜研究了其结构特征和析晶性能。发现随着(Al2O3+P2O5)含量减少,玻璃中Na2O含量增加,玻璃化转变温度从685 ℃降低到622 ℃,当减少至摩尔分数为22%时,出现析晶峰且起始析晶温度降低。拉曼光谱表明Q4P对应的拉曼峰强度变低且逐渐向低波数方向移动,说明Na2O作为网络修饰体使硅酸盐玻璃结构逐步解聚,玻璃的析晶能力逐渐增强。结果表明:当(Al2O3+P2O5)摩尔分数为22%时热处理后的样品存在晶型转变,700 ℃热处理时以NaAlSiO4霞石晶体为主,900 ℃时转变为以Na6.8Al6.3Si9.7O32霞石晶体为主。当(Al2O3+P2O5)的摩尔分数为21%和20%时,热处理后的样品能稳定析出Na3PO4和Na6.8Al6.3Si9.7O32晶体。热处理后的样品析出了耐酸侵蚀性较差的富磷相和Na3PO4晶体,导致化学稳定性变差。  相似文献   

5.
本文主要研究了CaO含量对CaO-B2O3-Al2O3-SiO2(CBAS)玻璃/Al2O3低温共烧陶瓷结构和性能的影响。利用DSC、FTIR、XRD、SEM等测试方法对玻璃和低温共烧陶瓷的结构进行表征与分析。研究结果表明,CaO含量低于40%(质量分数,下同)时,由其引入的游离氧增加破坏了网络结构,降低玻璃黏度。CaO含量为40%及以上时,Ca2+与[SiO4]四面体形成较大的阴离子基团,增大玻璃黏度,提高玻璃化转变温度。CaO会促进CaSiO3和Ca2SiO4的析出和CaSiO3向Ca2SiO4的转变。CaO含量增加导致陶瓷的致密度先增加后减少,晶相尺寸增大,使陶瓷的密度、抗折强度和介电常数先增大后减小。当CaO含量为40%时,样品综合性能最好,密度最大为2.94 g/cm3,抗折强度为153.44 MPa,介电常数为9.69。  相似文献   

6.
Al2O3-SiO2气凝胶是一种低密度、高比表面积、高孔隙率、低热导率的三维结构纳米多孔材料,在航空航天、建筑保温、石油化工等领域具有广泛的应用前景,是理想的高温隔热基体之一。但纯Al2O3-SiO2气凝胶力学性能和抑制高温辐射传热能力较弱,限制了自身在隔热领域的应用。采用纤维作为增强体,制备的Al2O3-SiO2气凝胶复合材料同时具有较好的力学和隔热性能,是目前国内外高温隔热材料方向的研究热点之一。本文介绍了纤维增强Al2O3-SiO2气凝胶隔热复合材料的制备方法,综述了目前国内外该材料的研究进展,并对其未来发展趋势做了展望。  相似文献   

7.
采用共沉淀法制备了一系列不同Al2O3含量的ZrO2-Al2O3复合氧化物,并在催化精馏实验装置中考察了该催化剂在碳酸丙烯酯(PC)与甲醇酯交换制备碳酸二甲酯(DMC)过程中的催化性能。通过X射线衍射(XRD)、红外光谱(FTIR)、X射线光电子能谱(XPS)、CO2程序升温脱附(CO2-TPD)和NH3程序升温脱附(NH3-TPD)等手段对所制备的催化剂进行了表征。结果表明,催化剂表面存在的酸碱性位点是制约PC与甲醇酯交换性能的重要因素。复合氧化物中Al2O3含量可以有效调控催化剂的结构特征和表面的酸碱性质,不同于ZrO2或Al2O3单金属催化剂,复合氧化物ZrO2-Al2O3在合成过程中形成了稳定的固溶体结构,导致催化剂表面弱酸量增加,并产生了强碱位点。数据分析表明,催化剂表面的强碱和弱酸含量高时,其催化活性高,说明该反应具有酸碱协同催化作用。当Zr/Al比为1时,弱酸和强碱量均达到最大值,PC的转化率和DMC选择性可达到98.14%和99.96%。催化剂在经过12次循环使用后依旧保持较高的活性,具有良好的结构稳定性。  相似文献   

8.
靳元勋  霍地  孙旭东 《化工进展》2021,40(Z2):309-314
采用二乙三胺五乙酸(DTPA)为配合剂,以简易的液相法合成出微纳米纤维状Al和Al-Zr前体,煅烧处理制备了棒状α-Al2O3和Al2O3-ZrO2复合陶瓷粉体。同时研究了DPTA∶Al3+质量比、反应温度与时间对陶瓷粉体形态的影响。利用X射线衍射(XRD)、热分析(TG/DSC)以及扫描电子显微镜(SEM)对粉体进行了表征。结果表明:较高的DTPA∶Al3+质量比以及较长的反应时间有利于制备高长径比的纤维棒状Al和Al-Zr配合物前体。合成纳米纤维状α-Al2O3和Al2O3-ZrO2前体的最优条件是反应温度60℃,反应时间5.5h,DTPA∶Al3+比例为1.2∶1。相应地,该前体煅烧后可以制备出棒状α-Al2O3和Al2O3-ZrO2复合陶瓷粉体。  相似文献   

9.
以Bi(NO3)3·5H2O、Co(CH3COO)2·4H2O为原料,采用化学沉淀-水热法制备了Co3O4-Bi2O2CO3异质结构复合半导体光催化剂,并通过X射线衍射仪(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、紫外可见漫反射光谱(DRS)、荧光光谱(PL)等手段对所合成的复合型催化剂进行了理化性能表征。研究结果表明:引入Co3O4没有改变Bi2O2CO3物相结构,但促进了Bi2O2CO3 对可见光的吸收能力,提高了Bi2O2CO3表面吸附氧物种的数量,抑制了光生载流子复合。复合光催化剂对罗丹明B(RhB)的光催化脱色实验显示引入Co3O4能够明显提高Bi2O2CO3催化剂的光催化脱色能力。尤其是Co3O4引入量为0.6%的Co3O4-Bi2O2CO3样品对罗丹明B染料的光催化脱色率可达到97%(模拟日光照射30min)。本文为复合型光催化剂制备提供了简单易行的技术路线,制备的新型半导体复合光催化剂Co3O4-Bi2O2CO3在环境净化方面表现出了较好的应用前景。  相似文献   

10.
以电熔铬刚玉和白刚玉为主要原料,用Cr2O3微粉部分替代电熔铬刚玉细粉,研究了Cr2O3微粉加入量对Al2O3-Cr2O3质耐火材料常温和高温性能、物相组成和显微结构的影响。结果表明,随着Cr2O3微粉加入量的增加,原位形成了(Al1-xCrx)2O3固溶体,促进了烧结,材料的显气孔率先降低后升高,且(Al1-xCrx)2O3固溶体的晶格常数呈线性增加,符合Vegard定律。材料的常温抗折强度和常温耐压强度随Cr2O3微粉加入量的增加先升高后降低,在Cr2O3微粉加入量为15%(质量分数)时强度达到最大值。而当Cr2O3微粉加入量为20%(质量分数)时,由于有挥发现象,材料显气孔率上升,强度下降。材料高温抗折强度随Cr2O3微粉加入量的增加而增加,材料的残余强度保持率呈先降低后升高的趋势。  相似文献   

11.
通过调整陶瓷结合剂中碱金属氧化物Na2O含量,来探究碱金属氧化物Na2O对陶瓷结合剂金刚石磨具性能的影响。当n(Na2O)/n(SiO2)=0.1时,磨具试样的强度(57.7 MPa)和硬度(117 HRB)达到最大值。随着碱金属氧化物Na2O添加量的增加,结合剂的耐火度随之显著降低,流动性显著增加。磨具试样断口SEM照片表明,适量的碱金属氧化物Na2O能够使磨具断面空隙减少,孔隙度降低,结合剂与磨料分布更加均匀,结合剂与磨料结合界面更加紧密。XRD分析表明,磨具试样在720 ℃下烧结,结合剂中除了玻璃相还产生了一种晶相,结合剂中碱金属氧化物Na2O的含量对烧结后产生的晶相种类无影响。  相似文献   

12.
Al2O3陶瓷膜在过滤染料废水过程中容易被染料大分子堵塞,导致Al2O3陶瓷膜水通量下降。以钛酸丁酯、异丙醇铝为前驱体,采用溶胶-凝胶法制备Ti(OH)4-AlOOH复合溶胶,经450 ℃烧成获得TiO2-Al2O3复合粉体。以SEM、纳米粒度/电位仪作为主要表征手段,研究了不同Ti(OH)4和AlOOH摩尔比对复合溶胶粒径分布的影响,进而探究TiO2-Al2O3复合粉体的光催化性能。结果表明,Ti(OH)4和AlOOH摩尔比为0~0.4时,随着Ti(OH)4和AlOOH摩尔比的增大,胶粒的平均粒径从67.5 nm减小到34.0 nm,Ti(OH)4-AlOOH复合溶胶的电位从43 mV升高至53 mV。当Ti(OH)4和AlOOH摩尔比为0.4时,复合粉体对结晶紫的去除率高达79.3%,反应速率常数增大到了0.018 min-1。TiO2-Al2O3复合粉体制备的陶瓷膜能有效降解表面沉积的大分子,解决了陶瓷膜堵塞的问题。  相似文献   

13.
本文用传统高温熔融法熔制Li2O-Al2O3-SiO2系高铝玻璃,改变碱金属氧化物n(Li2O)/n(Na2O)的摩尔比,运用阿基米德排水法、热膨胀仪、DSC、傅里叶变换红外光谱和拉曼光谱等测试手段和仪器,探究了混合碱金属效应对Li2O-Al2O3-SiO2系玻璃结构和热膨胀性能的影响。结果显示:随着n(Li2O)/n(Na2O)比例增大,混合碱金属效应对Li2O-Al2O3-SiO2系玻璃的密度和热膨胀系数的影响一致,表现为先增大后减小,当R=0.25(R=n(Li2O)/[n(Li2O)+n(Na2O)],摩尔比)时,出现极值,此时密度达到最大2.447 4 g/cm3,热膨胀系数达到最大7.811 7×10-6/℃;对玻璃特征温度的影响随着温度的升高而逐渐减弱至消失;对玻璃的析晶能力有一定的提升作用;对玻璃三维骨架结构中的硅氧四面体Qn的影响也各不相同。  相似文献   

14.
TiO_2 modified Al_2O_3 binary oxide was prepared by a wet-impregnation method and used as the support for ruthenium catalyst. The catalytic performance of Ru/TiO_2–Al_2O_3catalyst in CO_2 methanation reaction was investigated. Compared with Ru/Al_2O_3 catalyst, the Ru/TiO_2–Al_2O_3catalytic system exhibited a much higher activity in CO_2 methanation reaction. The reaction rate over Ru/TiO_2–Al_2O_3 was 0.59 mol CO_2·(g Ru)1·h-1, 3.1 times higher than that on Ru/Al_2O_3[0.19 mol CO_2·(gRu)-1·h-1]. The effect of TiO_2 content and TiO_2–Al_2O_3calcination temperature on catalytic performance was addressed. The corresponding structures of each catalyst were characterized by means of H_2-TPR, XRD, and TEM. Results indicated that the averaged particle size of the Ru on TiO_2–Al_2O_3support is 2.8 nm, smaller than that on Al_2O_3 support of 4.3 nm. Therefore, we conclude that the improved activity over Ru/TiO_2–Al_2O_3catalyst is originated from the smaller particle size of ruthenium resulting from a strong interaction between Ru and the rutile-TiO_2 support, which hindered the aggregation of Ru nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号