首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以玉米秸秆、枫杨树枝、花生壳为生物质材料,分别在450、550、650℃下,对3种生物质材料进行厌氧热解制备了9种生物炭,对溶液中的Cd2+进行吸附试验,研究了pH、生物炭投加量、吸附时间和Cd2+初始质量浓度对Cd2+吸附效果的影响。结果表明,吸附过程与Langmuir、Freundlich和准一级动力学方程拟合的相关性较好。pH对吸附的影响较大,吸附率与生物炭的投加量呈正比,650℃制备的3种生物炭的吸附能力更强,花生壳生物炭对溶液中的Cd2+具有更好的吸附能力。  相似文献   

2.
王昱璇  王红  卢平 《化工进展》2019,38(11):5142-5150
在300~700℃下制备了水葫芦炭和玉米秸秆炭,研究了生物质种类、热解温度、溶液初始pH和Zn(Ⅱ)初始浓度对两种生物炭吸附溶液中Zn(Ⅱ)的影响,并结合吸附过程曲线拟合获得了吸附动力学模型。结果表明:随着热解温度的升高,生物炭理化特性发生显著变化,生物炭的挥发分、氧含量、氢含量以及O/C和H/C显著降低,而固定碳、灰分和热值显著升高,生物炭的比表面积、总孔容、微孔容、pH以及KCl等盐类物质均得到了显著增加。随着溶液初始pH增加,生物炭对Zn(Ⅱ)的吸附能力呈现先快速增加然后逐步趋于稳定或稍有下降的趋势,不同生物炭的最大平衡吸附量出现在pH=4~6之间。Zn(Ⅱ)初始浓度<30mg/L时,生物炭对Zn(Ⅱ)平衡吸附量随溶液Zn(Ⅱ)初始浓度的增加呈线性快速增长,而当Zn(Ⅱ)初始浓度>30mg/L,其平衡吸附量增长趋势变缓。在相同Zn(Ⅱ)初始浓度下,随着热解温度的提高,生物炭对溶液中Zn(Ⅱ)平衡吸附量逐渐提高,且在同一热解温度下制备的水葫芦炭对Zn(Ⅱ)的平衡吸附量显著高于玉米秸秆炭。两种生物炭对溶液Zn(Ⅱ)的吸附符合Lagergren准二级动力学模型,其吸附过程均受化学吸附控制,水葫芦炭和玉米秸秆炭对Zn(Ⅱ)吸附机制主要包括含氧官能团的络合作用和无机盐离子的沉淀作用。  相似文献   

3.
徐清艳 《山东化工》2023,(2):4-7+10
以小麦秸秆为原料,通过浸渍法制备改性生物炭,对其采用XRD、SEM进行表征分析,研究钴改性生物炭对尼泊金乙酯(EP)的吸附性能。讨论了改性生物炭的用量、尼泊金乙酯的初始浓度,反应时间及反应温度对EP溶液的吸附影响。实验结果表明:改性生物炭对EP的吸附主要以化学吸附为主;在一定范围内,改性生物炭对EP的吸附效率随生物炭用量的增加而增加;反应温度对改性生物炭吸附EP的影响较大,在EP浓度为30 mg/L、生物炭添加量为5 g/L、温度为45℃条件下吸附4 h时EP最大去除率为95.5%。  相似文献   

4.
《应用化工》2022,(2):285-289
花生壳在600℃焙烧制得生物炭(BC),用三氯化铁(FeCl_3)溶液进行改性,制备载铁改性生物炭(Fe-BC),采用扫描电子显微镜(SEM)、红外光谱(FTIR)进行表征,对高氟水进行了吸附处理研究。结果表明,当FeCl_3溶液浓度为4 mol/L,Fe-BC投加量为8 g/L,5 mg/L NaF溶液pH为7时,吸附性能良好,2 h后吸附饱和,饱和吸附量为1.545 mg/g。Fe-BC吸附氟离子的过程符合准二级动力学模型,其吸附模式符合Langmuir等温吸附模型。  相似文献   

5.
《应用化工》2022,(12):3350-3354
水体重金属污染对自然环境和人体健康造成了极大的危害,开发新型污染治理材料具有重大意义。本研究以玉米秸秆、牛粪粉末、小麦秆和麦穗为原料,以羟基磷灰石(HAP)和磷酸二氢钾(KH_2PO_4)为改性剂,采用浸渍-热解法制备生物炭,并探讨了生物炭对水中Pb(Ⅱ)的吸附效果。结果表明,磷基改性生物炭相比未改性生物炭对铅的吸附容量显著提高,KH_2PO_4改性玉米秸秆-牛粪生物炭对铅的吸附量较未改性增加了394.6 mg/g,提高了478.0%;HAP改性麦穗生物炭对铅的吸附量较未改性增加了507.9 mg/g,提高了997.7%;玉米生物炭原料中添加牛粪可显著提高改性生物炭对铅的吸附能力,相对于未添加,HAP和KH_2PO_4改性玉米秸秆-牛粪生物炭的铅吸附量分别增加了210.6,177.1 mg/g,提高了140.0%和59.1%。本研究制备的KH_2PO_4改性玉米秸秆-牛粪生物炭和HAP改性小麦生物炭对铅均表现出较强的吸附效果。  相似文献   

6.
采用农林废弃物核桃壳、花生壳和木屑对重金属铅进行吸附研究。探讨反应时间、温度、pH值、吸附剂用量和初始Pb(Ⅱ)浓度以及吸附剂改性对吸附效果的影响,结果表明,花生壳对Pb(Ⅱ)的吸附效果优于核桃壳和木屑,其在45℃,pH值6.0,Pb(Ⅱ)初始浓度100 mg/L,花生壳投入量10 g/L的条件下反应240 min,其吸附率为88.1%,花生壳改性后的吸附率可达97.8%。花生壳、核桃壳和木屑对Pb(Ⅱ)的吸附均可用Langmuir方程描述。  相似文献   

7.
以核桃壳为原料制备得到核桃壳粉和核桃壳生物炭两种吸附剂,利用FTIR对两个吸附剂结构进行了表征,并进一步研究了其对有机染料的吸附性能。结果表明,核桃壳粉和核桃壳生物炭均能有效去除水体中的亚甲基蓝和孔雀石绿,但是核桃壳生物炭的还能有效吸附甲基橙和罗丹明B。核桃壳活性炭吸附处理甲基橙时不仅用量小,而且还不受溶液p H的影响,总之核桃壳活性炭应用范围比核桃壳粉更广,吸附效果也更好。  相似文献   

8.
分别采用草酸、乙酸、盐酸对花生壳进行酸化改性,制备得到3种生物吸附剂:草酸改性花生壳(OPS)、乙酸改性花生壳(APS)、盐酸改性花生壳(HPS);将其用于吸附酸性橙Ⅱ,考察了改性剂、改性花生壳粒度、吸附时间、酸性橙Ⅱ溶液pH值、改性花生壳投加量及酸性橙Ⅱ溶液初始浓度等因素对吸附率的影响,初步探讨了吸附动力学。结果表明,改性花生壳对酸性橙Ⅱ的吸附能力较未改性花生壳显著提高,其中HPS的吸附效果最好。在改性花生壳粒度为120目、吸附时间为100min、酸性橙Ⅱ溶液pH值为2.3、改性花生壳投加量为10g·L~(-1)、酸性橙Ⅱ溶液初始浓度为50mg·L~(-1)时,OPS、APS和HPS对酸性橙Ⅱ的吸附率分别为88.6%、92.0%和95.4%。吸附动力学研究表明,改性花生壳对酸性橙Ⅱ的吸附行为符合Lagergren准二级动力学模型,吸附过程主要为化学吸附,且吸附速率常数与改性剂酸度有关。  相似文献   

9.
为研究以病死猪以炭化焚烧法制备的肉骨生物炭对水溶液中Pb~(2+)的吸附特性,分析了吸附时间、吸附剂用量、Pb~(2+)的初始含量等因素对吸附效果的影响。结果表明,对于50 mL质量浓度400 mg/L的Pb~(2+)溶液,当溶液初始pH为5.5、肉骨生物炭投加量为200 mg、吸附时间为240 min时,肉骨生物炭对Pb~(2+)的吸附效果达到最佳,吸附量为99.37 mg/g,Pb~(2+)去除率达到99%以上。肉骨生物炭对Pb~(2+)的动力吸附过程可以由准2级动力学模型很好地拟合;Langmuir方程描述的单分子层吸附模型能更好地拟合其等温吸附过程,饱和吸附量为106.4 mg/g。相比于玉米秸秆生物炭,肉骨生物炭对Pb~(2+)有更大的吸附容量和更快的吸附速率,是性能较好的Pb~(2+)吸附材料。  相似文献   

10.
为探究不同生物炭对新烟碱类农药的吸附性能,寻求最佳的新烟碱类农药吸附材料,选取玉米芯、玉米秸秆、杨树枝、小麦秸秆、梧桐枝、花生壳6种生物质为原料,在300、500和700℃下制备得到18种生物炭。通过比较不同生物炭对吡虫啉、噻虫嗪、呋虫胺3种新烟碱类农药的吸附能力,筛选出了吸附效果较佳的生物炭,分别为700℃制备的玉米秸秆生物炭、小麦秸秆生物炭、杨树枝生物炭;吸附动力学和等温吸附研究表明,3种筛选生物炭对吡虫啉、噻虫嗪、呋虫胺的吸附过程符合准二级动力学模型、Langmuir模型和Freundlich模型。  相似文献   

11.
以花生壳为原材料,在利用KNO3溶液活化基础上,炭化制备花生壳质生物炭。采用SEM、BET等手段对花生壳质生物炭样品进行表面形貌和比表面积分析。研究不同炭化工艺对其微观形貌的影响,同时研究了不同吸附条件下花生壳质生物炭对苯酚的吸附性能。结果表明,活化剂KNO3浓度越高、炭化温度越高、炭化时间越长,生物炭的比表面积越大、表面平整度越低、孔道数量越多、吸附性能越好。花生壳质生物炭对苯酚吸附性能最佳条件为:吸附时间120 min,吸附量13.93 mg/g;p H值越低,苯酚溶液初始浓度越高,则吸附量越大,理论最大吸附量为26.32 mg/g。  相似文献   

12.
研究了不同热解温度下以辣椒秸秆为原材料制备的生物炭对水中考马斯亮蓝(CBB)染料的吸附特性,并对生物炭进行表征.结果表明,热解温度为700℃,烧制2 h下制备的辣椒秸秆生物炭对考马斯亮蓝的去除效果最好.在生物炭投加量为3 g/L,考马斯亮蓝染料初始质量浓度为50 mg/L,溶液pH为5,反应温度为25℃的条件下,吸附在120 min左右达到平衡,去除率可达92.66%,最大吸附量为20.51 mg/g.该吸附过程为单层吸附,符合伪二级动力学.辣椒秸秆生物炭可以有效去除水中的考马斯亮蓝染料.  相似文献   

13.
以核桃壳为原料、磷酸(H3PO4)为活化剂,制备核桃壳基活性炭(PBC),并对其吸附Cr(Ⅵ)性能进行探究。分别使用SEM、TEM、BET、FTIR、Raman、XPS等表征探究PBC的理化特性。研究溶液pH、活性炭用量和初始浓度对吸附性能的影响,研究PBC在不同吸附时间下吸附Cr(Ⅵ)动力学行为,分析吸附机理。结果表明,在磷酸浸渍比为1∶1,热解温度为400℃时,制备的核桃壳基活性炭具有良好的吸附性能。对较低浓度的Cr(Ⅵ)溶液(≤50mg/L)吸附率达到100%,吸附动力学和等温线分别符合拟二级动力学模型和Langmuir模型,吸附过程中化学吸附占主导地位,并且热力学分析表明吸附过程是自发的吸热过程。  相似文献   

14.
连念 《当代化工》2021,50(9):2033-2036
在300、500、700℃条件下制备玉米秸秆生物炭(BC300、BC500、BC700),研究了吸附时间、生物炭投加量、溶液初始pH值对Ni(Ⅱ)去除效果的影响.结果表明:玉米秸秆生物炭对溶液中Ni2+的去除率随着吸附时间的增加而增加,在120 min时,BC300、BC500、BC700去除率分别达到76.1%、81.4%和92.8%,此时生物炭的吸附量分别为9.51、10.18、11.6 mg·g-1,Ni2+的去除率随生物炭投加量以及pH的升高均不断增加,且高温热解的生物炭,其吸附效果更好.正交实验表明,4个因素中pH值对镍的去除率影响最大,其次分别为生物炭投加量、吸附时间和生物炭的制备温度.  相似文献   

15.
通过化学活化法制备芝麻秸秆活性炭,然后对亚甲基蓝进行了吸附实验.考察了活性炭的投加量、初始浓度、吸附时间对吸附过程的影响及表征分析.结果表明:碱炭比为2:1时,制备得到的活性炭吸附性能最好.初始浓度为40 mg/L,吸附时间为90 min,投加量为20 mg时,去除率达到最大值98.49%.经过准一级动力学和准二级动力...  相似文献   

16.
以核桃壳为前体采用水热炭化法制备水热炭,利用低温液氮物理吸附仪和傅里叶变换红外光谱仪测定水热炭的孔结构和表面官能团;实验研究其对液相中Cr(Ⅵ)的吸附特性,考察吸附剂加入量、Cr(Ⅵ)初始浓度、pH值、吸附时间等因素对吸附效果的影响。结果表明,水热炭的孔径分布范围较宽,表面含氧官能团丰富,能够很好地吸附溶液中的六价铬;溶液pH值对Cr(Ⅵ)的脱除影响很大,pH值呈酸性时吸附效果较好,pH值为2时脱除率达98.85%.当反应温度35℃、Cr(Ⅵ)初始浓度50mg/L、水热炭投加量为16g/L、pH值为6、吸附时间为100min时,Cr(Ⅵ)离子的去除率可达98%以上。核桃壳水热炭对Cr(Ⅵ)具有良好的吸附能力,吸附过程符合准二级吸附动力学模型,可用Freundlich吸附等温模型来描述,吸附等温线的线性相关性显著。  相似文献   

17.
以花生壳为前驱体制备生物质炭,然后用高锰酸钾对生物质炭进行改性,通过比较改性前后两种生物质炭对溶液中铅离子的吸附性能,结果表明改性后的花生壳生物质炭的吸附性能明显优于改性前,饱和吸附量达到130. 6 mg/g,是一种高效吸附剂。  相似文献   

18.
为处理含磷废水和实现农业废弃物的资源化利用,将小麦秸秆制成生物炭,通过MgCl2溶液对其进行浸渍改性,探究改性生物炭对水中磷酸盐的吸附特性。结果表明:热解温度为600℃,0.1 mol/L MgCl2溶液改性得到的小麦秸秆生物炭(WS-0.1Mg-600)在pH=7、初始磷酸盐浓度为10 mg/L时,对磷酸盐吸附效果最好;WS-Mg-600投加量为1.25 g/L时,对磷酸盐吸附量为(4.02±0.46)mg/g;WS-Mg-600吸附磷酸盐最佳pH为10。吸附过程符合拟二级动力学方程以及Langmuir模型,表明该吸附过程是以化学吸附为主,并为单层吸附。  相似文献   

19.
环氧氯丙烷改性花生壳吸附水中Cu~(2+)的研究   总被引:1,自引:0,他引:1  
利用环氧氯丙烷对花生壳改性制备吸附剂,并用其吸附水溶液中Cu2+。实验结果显示,花生壳的改性条件为:花生壳5.0 g,浓度为1.5 mol/L NaOH溶液100 mL,环氧氯丙烷5 mL,反应温度30℃,反应40 min;用上述条件改性花生壳0.3 g,吸附初始浓度50 mg/LCu2+溶液,控制溶液的pH为5.0,吸附时间3.0h,对Cu2+吸附率可达96.0%,高于未改性花生壳的70.4%,使吸附率提高36.4%。  相似文献   

20.
张北  刘斌  岳敏  许醒 《山东化工》2013,(4):20-24
采用三乙烯四胺对花生壳颗粒进行改性制备吸附剂,以投加量、粒径、接触时间、Cr(Ⅵ)初始浓度、温度和溶液初始pH值为影响因素,通过静态实验,研究其对水中Cr(Ⅵ)的吸附性能。得到最佳吸附条件为吸附剂投加量1.0~1.6g/L,接触时间150min,初始浓度100mg/L,去除率可达99.36%,饱和吸附量达100.95mg/g。分析认为,主要的吸附机理可能是Cr2O27-与改性花生壳吸附点位上的功能基团之间的离子交换,伴随着静电吸附及氧化还原过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号