首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
采用聚丙烯酸(PAA)与三羟甲基丙烷-三[3-(2-甲基吖丙啶基)丙酸酯](Sac-100)的交联反应对聚四氟乙烯(PTFE)平板膜进行亲水改性,通过扫描电子显微镜、傅里叶变换衰减全反射红外光谱和能量色散X射线光谱仪对平板膜表面进行了表征,并研究了PAA和Sac-100含量、反应体系pH等条件对PTFE平板膜亲水性能的影响。结果表明,PTFE疏水膜经pH=5、质量分数分别为0.4%的Sac-100和2.0%的PAA交联处理后,再经过饱和NaHCO_3浸泡可以使PTFE膜表面水接触角由(135±1)°降低到(22±1)°,膜表面抗污染性增强。改性PTFE亲水平板膜表面含有羰基、羟基以及羧基离子、膜原纤维变粗,膜具有良好的抗蛋白质吸附能力,亲水层稳定性。  相似文献   

2.
采用戊二醛和O-羧甲基壳聚糖(OCMCS)、聚乙烯醇(PVA)在聚四氟乙烯(PVDF)平板膜内进行交联形成一层水凝胶涂层,从而对PTFE平板膜进行亲水改性。考察了反应条件对膜亲水性能的影响和膜的抗污染性能,并对膜表面进行表征。结果表明,水凝胶涂层附着在PTFE纤维表面使膜原纤维变粗,随着PVA含量的增加,改性膜的水通量先增加后减少,接触角先减小后增大,并且当PVA与OCMCS的质量比为1:1,反应时间为6 h、温度为50℃时,膜的性能为优,此时水通量(4 481±80) L/(m~2·h)、接触角57.48°。由于改性膜的表面含有羟基和氨基等官能团,使膜具备良好的抗蛋白质吸附能力;PVA与OCMCS交联形成的物质分子量大,粘附力强,使亲水涂层不易脱落。  相似文献   

3.
以硅烷偶联剂KH560(γ-缩水甘油醚氧丙基三甲氧基硅烷)为表面改性剂,对ATO(锑掺杂氧化锡)纳米粉体进行表面接枝改性,制得KH560偶联改性的ATO纳米粉体。采用傅立叶变换红外光谱(FTIR)、热重分析(TG)、粒度分析等手段对其进行了分析和表征,研究了KH560用量、反应温度、反应时间对ATO纳米粉体表面偶联改性的影响。结果表明,在乙醇、水混合溶剂中可以实现KH-560对ATO纳米粉体的偶联改性,当KH560用量为0.4 ml,反应温度为30℃,反应时间为2 h时,ATO粉体表面接枝的KH560接枝率最大,并获得较好的分散性。  相似文献   

4.
以γ-缩水甘油醚氧丙基三甲氧基硅烷(KH 560)、γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH 570)及八甲基环四硅氧烷(D4)为原料,十二烷基苯磺酸(DBSA)阴离子乳化剂(又作催化剂)与烷基苯酚聚氧乙烯醚(OP-10)非离子乳化剂为复合乳化剂,通过乳液聚合反应合成了性能稳定的改性聚硅氧烷乳液。讨论了KH 560、KH 570及混合单体(KH 560/KH 570)用量对聚硅氧烷乳液粒径及性能的影响。结果表明:随着KH 560用量的增加,乳液粒径逐渐增大,而分布指数先减小后增大。随着KH570用量的增加,乳胶粒粒径先增大后减小,但是粒径分布变窄。两种改性单体同时加入所合成的乳液粒径更大。硅烷偶联剂改性聚硅氧烷乳液耐高温稳定性、耐低温稳定性、离心稳定性及稀释稳定性都良好。加入KH 560单体改性的聚硅氧烷乳液,其在环境温度下成膜效果较佳。  相似文献   

5.
采用γ-巯丙基三甲氧基硅烷(KH590)对纳米二氧化硅表面进行接枝改性,研究KH590用量、反应时间和反应温度等对纳米二氧化硅相对接枝率和粒径的影响;采用红外光谱(FT-IR)和扫描电子显微镜(SEM)等手段对改性前后的纳米二氧化硅进行表征。结果表明:KH590通过水解后与二氧化硅粒子表面的羟基发生反应,成功接枝到纳米二氧化硅表面;其最佳工艺条件为:KH590用量为二氧化硅质量的15%,反应温度为80℃,反应时间为10 h,其相对接枝率达到10.3%;与未改性纳米二氧化硅相比,其平均粒径明显变小,分散性及亲油性明显变好。  相似文献   

6.
以乙醇作为溶剂,采用硅烷偶联剂γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)对填料氧化铝(Al2O3)进行表面改性处理。研究偶联剂的预水解条件,偶联剂的用量以及反应条件(反应温度、时间、搅拌速率)对Al2O3改性的影响。采用红外光谱(IR)对改性后的Al2O3(M-Al2O3)进行结构表征,并利用扫描电镜(SEM)对M-Al2O3的微观结构进行观察。通过测试M-Al2O3的吸油值以及环氧树脂/M-Al2O3的黏度进一步表征改性效果。实验结果表明,KH560已经成功接枝在Al2O3表面,M-Al2O3粉体的棱角圆滑,颗粒无明显团聚现象。M-Al2O3的吸油值比未表面改性的Al2O3低,下降了43.4%左右。与环氧树脂/Al2O3复合材料相比,环氧树脂/M-Al2O3复合材料的黏度降低约16.1%。最后确定Al2O3表面改性处理的最佳条件为:KH560用量为5%,KH560预水解pH值为7,KH560预水解时长1 h,反应温度60℃,反应时间1 h,搅拌速率1500 r/min。  相似文献   

7.
硅基抗菌粉体表面改性及对聚氯乙烯塑料抗菌性能影响   总被引:1,自引:0,他引:1  
用硅烷偶联剂KH570对硅基抗菌粉体进行表面有机化改性,研究了偶联剂用量、反应时间及反应温度对表面改性效果的影响.通过润湿性和吸光度测定,确定了最佳表面改性条件:硅烷偶联剂KH570含量为2份(100 g粉体中加入的改性剂量),反应温度为80℃,反应时间为5 h.通过红外光谱(FTIR)、热重(TG)和透射电镜(TEM)等对改性前后的粉体表面结构、热性能及在聚氟乙烯(PVC)中分散性分析表明:KH570以化学键形式接枝到粉体表面,形成了有机包覆,改变了粉体表面的极性;改性后的抗菌粉体在PVC中的分散性得到了提高,使其抗菌性增强.  相似文献   

8.
由于聚四氟乙烯(PTFE)材料具有强疏水性和极低的表面能,使得PTFE中空纤维膜润湿性差,难以处理水性溶液,限制了其应用过程和领域,因此开展PTFE中空纤维膜亲水化改性研究具有重要的现实意义。利用仿生矿化技术对PTFE中空纤维膜进行表面改性,研究了不同矿化工艺对膜亲水性能的影响,并对改性前后PTFE中空纤维膜的官能团、水通量、气通量、孔径及孔径分布进行了表征。研究表明,仿生矿化能够提高PTFE中空纤维膜的亲水性和水通量,同时由于碳酸钙分子进入膜孔内部,使孔径分布更加均匀,平均孔径和气通量减小。  相似文献   

9.
使用NaOH溶液亲水改性聚偏氟乙烯(PVDF)/聚甲基丙烯酸甲酯(PMMA)共混膜,在共混膜表面化学浴沉积烷基氯硅烷,构筑微纳米结构,制备出具有超疏水能力的PVDF/PMMA共混膜,对共混膜的微观结构和性能进行了表征。结果表明,亲水改性提升了PVDF/PMMA共混膜表面烷基氯硅烷的化学浴沉积效果;亲水改性的最佳工艺条件为:NaOH的浓度为40%、反应时间为60 min、反应温度为70℃;化学沉积后的.PVDF/13MMA共混膜接触角高达154.6°;集灰实验表明,倾斜角度约为1°时水滴能将膜表面的灰尘带走,膜的防污自洁性能优良。  相似文献   

10.
使用NaOH溶液亲水改性聚偏氟乙烯(PVDF)/聚甲基丙烯酸甲酯(PMMA)共混膜,在共混膜表面化学浴沉积烷基氯硅烷,构筑微纳米结构,制备出具有超疏水能力的PVDF/PMMA共混膜,对共混膜的微观结构和性能进行了表征。结果表明,亲水改性提升了PVDF/PMMA共混膜表面烷基氯硅烷的化学浴沉积效果;亲水改性的最佳工艺条件为:NaOH的浓度为40 %、反应时间为60 min、反应温度为70 ℃;化学沉积后的PVDF/PMMA共混膜接触角高达154.6 °;集灰实验表明,倾斜角度约为1 °时水滴能将膜表面的灰尘带走,膜的防污自洁性能优良。  相似文献   

11.
氮钒共掺杂纳米TiO2的表面改性及其对涂料中甲醛的降解   总被引:1,自引:0,他引:1  
利用硅烷偶联剂(KH570)对氮钒共掺杂纳米TiO2进行表面改性,考察了偶联剂用量、反应时间、反应温度及pH等改性条件的影响,从而确定最佳用量和最佳反应条件.利用元素分析、红外光谱、透射电子显微镜和热质等表征手段及亲油化度的测定,研究了表面改性的效果及分散状况.红外光谱表明,KH570以化学键合的方式结合在纳米TiO2的表面,并形成了有机包覆层,经测量,氮钒共掺杂纳米TiO2表面包覆的KH570的质量分数约为13.36% ~14.99%.将改性后的氮钒共掺杂纳米TiO2以一定的比例加入到成膜物质中制成一系列的涂料样品,然后测定其甲醛含量.结果表明,甲醛的降解率可达到82.2%.与普通涂料相比,加入改性后的氮钒共掺杂的纳米TiO2的涂料具有优异的物理性能.  相似文献   

12.
采用γ-缩水甘油醚氧丙基三甲氧基硅烷偶联剂KH560对钛酸铜钙(CCTO)进行表面处理,制备KH560改性的CCTO(Si@CCTO),然后将Si@CCTO与酚醛树脂(PF)复合制备PF/Si@CCTO复合材料。采用傅里叶变换红外光谱仪、X射线衍射仪对复合材料的结构进行表征,并研究了CCTO表面改性对复合材料介电性能的影响。结果表明:经过表面改性的CCTO提高了复合材料的介电性能,当w(KH560)为1%时,PF/Si@CCTO复合材料在100 Hz时的介电常数达到了28,比未改性的PF/CCTO复合材料的介电常数增加了16.0%;同时,在25~75℃,PF/Si@CCTO复合材料保持了较好的温度稳定性。  相似文献   

13.
采用远程氩等离子体对聚四氟乙烯(PTFE)膜进行了表面改性研究,通过接触角测定仪、扫描电子显微镜(SEM)和X射线光电子能谱仪(XPS)等手段,分析研究了改性后材料表面结构、性能的变化。结果表明:PTFE表面经远程氩等离子体处理后,表面微观形态和表面化学成分均发生了变化,且处理效果优于常规氩等离子体。远程氩等离子体可以在一定程度上抑制电子、离子的刻蚀作用,强化自由基反应,使材料表面获得更好的改性效果。经远程氩等离子体短时间(100s)处理后,PTFE表面的F/C比例从1.97降至1.44,O/C比例从0.015增至0.086;表面的水接触角从108°减小到53°;表面自由能从22.4×10-5N·cm-1增加至52.3×10-5N·cm-1。  相似文献   

14.
采用硅烷偶联剂KH550,KH560和KH570对石墨烯(GNPs)进行表面改性,通过预混、熔融共混、挤出制备了聚丙烯(PP)/改性GNPs复合材料,研究了3种硅烷偶联剂对PP/GNPs复合材料性能的影响.结果表明:与PP/GNPs相比,PP/改性GNPs复合材料的力学性能明显提升,KH560改性PP/GNPs复合材料...  相似文献   

15.
俞寅辉  乔敏  高南箫 《粘接》2014,(4):48-50,47
将γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)与环氧树脂(EP)预反应,采用黏度计、万能电子材料试验机、红外光谱、差示扫描量热仪,考查了KH560含量对EP/改性聚酰胺室温固化环氧结构胶性能的影响。结果表明,KH560含量从0增加至9质量份(每100份EP中加入量)时,胶体拉伸强度从51 MPa降低至36.5 MPa;压缩强度从79.7 MPa降低至53 MPa;粘接强度从8.7 MPa增至11.7 MPa。同时,固化物的热稳定性也有一定程度提高,未改性及9份KH560改性的EP固化物50%热失重的温度分别为382.1℃与403.6℃。  相似文献   

16.
先利用Ar等离子体预处理,再接枝丙烯酸(AA)单体,对聚四氟乙烯(PTFE)中空纤维膜表面进行持久亲水改性。实验考察了不同等离子体处理和接枝反应条件对膜亲水性能的影响,实验结果表明,PTFE膜在放电功率为300 W、处理时间为120 s、Ar气体流量为30 cm~3·min~(-1)和接枝温度为50℃、时间为8 h、丙烯酸体积浓度为20%时,膜表面接触角降到50°,显著提高了膜的亲水性,拓宽了PTFE膜的应用范围。  相似文献   

17.
通过多巴胺的自聚附着行为,对聚四氟乙烯(PTFE)中空纤维膜进行亲水改性。采用扫描电镜(SEM)、X射线光电子能谱(XPS)、红外光谱(FT-IR)和接触角(CA)对膜改性前后的表面形貌、化学组成和亲水性进行了表征。研究了改性条件对膜纯水通量的影响,并以牛血清蛋白(BSA)溶液为污染物考察了改性前后膜的抗污染性能。结果表明,多巴胺被成功引入PTFE膜表面,改性12 h时膜表面的F元素含量降低2.14%,O元素含量增加3.06%。膜的亲水性得到显著改善,水接触角由改性前的110°降低至改性后的80°。改性8 h时,纯水通量达原膜通量的1.5倍。改性前后膜孔径变化不大,但改性后的PTFE膜具有更好的抗污染性能,清水清洗后的通量恢复率在90%以上。  相似文献   

18.
聚四氟乙烯(PTFE)是一种全氟化聚合物,由四氟乙烯(CF2=CF2)聚合而成,是一种线型热塑性聚合物。C-F键的强键能使其具备优异的化学稳定性、耐腐蚀性、高机械强度。但是,PTFE具有强疏水性。因此,在用PTFE微滤膜进行水处理时,膜污染严重,使其应用受到了极大的限制。为了提高PTFE膜的抗污染性能,使其得到广泛的应用。人们采用了各种改性方法,如化学改性、等离子体辐照、原子层沉积和高温熔化来表面改性PTFE膜,提高其抗污染性能。本文介绍了近年来聚四氟乙烯膜改性技术的研究进展。讨论了聚四氟乙烯改性方法的优缺点,并对聚四氟乙烯多孔膜的应用方向进行了展望。  相似文献   

19.
研究了纳米凹凸棒土的有机表面改性方法.采用阳离子表面活性剂十八烷基三甲基氯化铵(OTAC)和硅烷偶联剂(KH570)协同对纳米凹凸棒土进行改性,讨论了反应时间、反应温度、OTAC和KH570的添加量对改性效果的影响.利用X射线衍射(XRD)、红外光谱(IR)、热失重(TG)和热差(DTA)等分析方法对改性前后的纳米凹凸棒土进行表征.结果表明纳米凹凸棒土适宜的改性条件为:OTAC的添加量为2%、前期反应时间为3 h、KH570的添加量为20%、后期改性时间为2 h、改性温度为80℃.由此方法所得的纳米凹凸棒土粉体已由亲水性变为疏水性.  相似文献   

20.
为提高膜的抗污染能力,对聚偏氟乙烯(PVDF)平板膜进行表面涂覆改性,得到超疏水PVDF平板膜,再将超疏水PVDF平板膜进行表面亲水化改性,制备出超疏水/亲水复合PVDF膜。当PVDF的质量浓度为2%、聚乙二醇(PG)的质量浓度为39%、涂敷液温度为50℃、蒸发时间为10 s、凝固浴温度为60℃时,超疏水PVDF平板膜接触角达到154.8°。表面亲水改性制得的PVDF超疏水/亲水复合膜的接触角为41°。然后研究了超疏水PVDF平板膜和PVDF超疏水/亲水复合膜的抗膜污染性能。结果显示,超疏水PVDF平板膜具有优良的抗无机污染性能和一定的抗有机污染性能;PVDF超疏水/亲水复合膜不仅具有优良的抗无机污染性能,而且其抗复合污染性能尤其是抗有机污染性能得到明显提升,为进一步构建高性能膜蒸馏抗污染膜提出了一个可行的技术方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号