首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
Poly(2-(methacryloyloxy)ethyl phosphorylcholine)-b-poly(N-isopropylacrylamide-co-2-(N,N-dimethylamino)ethyl methacrylate) (pMPC-b-p(NIPAM/DMA)) was synthesized via reversible addition-fragmentation chain transfer (RAFT) controlled radical polymerization. Below the critical aggregation temperature (CAT), i.e., about 40 °C, the diblock copolymer dissolved in water as a unimer with a hydrodynamic radius (Rh) of ca. 10 nm. Above CAT the diblock copolymers formed polymer micelles with an Rh of ca. 40 nm, composed of a p(NIPAM/DMA) core and biocompatible pMPC shell due to hydrophobic self-aggregation of the thermo-responsive p(NIPAM/DMA) block. The pendent 2-(N,N-dimethylamino)ethyl group of DMA in pMPC-b-p(NIPAM/DMA) reduced HAuCl4 to form gold nanoparticles (AuNPs) and could attach to their surfaces. The cores of these polymer micelles could be cross-linked above CAT by HAuCl4, which upon being reduced generated AuNPs as cross-linking points to form core cross-linked (CCL) polymer micelles, as confirmed by UV-vis absorption and dynamic light scattering measurements. The CCL polymer micelles absorbed visible light at 532 nm because of surface plasmon resonances of the AuNPs. The Rh of the CCL polymer micelles remained at ca. 40 nm regardless of temperature.  相似文献   

2.
Crystallization of two oxyethylene/oxybutylene block copolymers (E76B38 and E155B76) from micelles in block copolymer/amorphous homopolymer blends was studied by differential scanning calorimetry (DSC) and time-resolved small angle X-ray scattering (SAXS). Unlike the simultaneous crystallization and formation of superstructure in crystallization from an ordered structure, crystallization of block copolymer from micelles can be divided into two steps. The core of the micelles firstly crystallizes individually, with first-order crystallization kinetics and homogeneous nucleation mechanism. The SAXS revealed that crystallization-induced deformation occurs for the micelles, which strongly depends on microstructure of the block copolymers. For the shorter block copolymer E76B38, larger deformation induced by crystallization was observed, leading to coalescence of the micelles after crystallization, while for the longer block copolymer E155B76 the micelles show little deformation and the morphology of micelle is retained after crystallization.  相似文献   

3.
Jianbo Li  Yang Cao 《Polymer》2010,51(6):1301-580
Biodegradable star-shaped poly(?-caprolactone) and poly(?-caprolactone-b-l-lactide) (5sPCL-b-PLLA) with five arms were synthesized by ring-opening polymerization (ROP) from an asymmetric BIS-TRIS core via “core-first” strategy. Subsequently, a series of amphiphilic and double responsive star-block copolymers were synthesized by Z-RAFT star polymerization of N,N-dimethylamino-2-ethyl methacrylate (DMAEMA) from the star-shaped macro-RAFT agent, which was prepared by attaching 3-benzylsulfanylthiocarbonylthiocarbonylsufanylpropionic acid (BSPA) to 5sPCL-b-PLLA using a simple two-step reaction sequence. GPC and 1H NMR data demonstrated the polymerization courses are under control. The molecular weight of 5sPCL-b-PLLA-b-DMAEMA increased with the monomer conversion, and the molecular weight distribution was in the range of 1.19-1.37. The spherical micelles with degradable core and pH/thermo-double sensitive shell had been prepared from the aqueous medium of the amphiphilic star-shaped copolymers by dialysis method. Both pH and thermal-responsive behaviours of copolymer micelles obtained in this study were investigated. The micelle size and morphology were measured by DLS, AFM and TEM.  相似文献   

4.
Semifluorinated block copolymers of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(fluorooctyl methacrylates) (PFOMA) were prepared using group transfer polymerisation via sequential monomer addition. Wide ranges of copolymers were obtained with good control over both molecular weight and composition by adjusting the monomers/initiator ratio. The micellar characteristics of the copolymers in water and chloroform were investigated by quasi-elastic light scattering and transmission electron microscopy. The size and morphologies of micelles were greatly influenced by copolymer composition, pH, and temperature. In addition, the solubility of copolymers and the formation of water-in-carbon dioxide (W/C) microemulsions were described in terms of the cloud points. The block copolymers exhibited the excellent ability of stabilizing W/C microemulsions.  相似文献   

5.
The weak mechanical properties of hydrogels, especially physically cross-linked hydrogels are usually a major factor to hinder their application. To solve this problem, in this work, we prepared a high strength and toughness of double physically cross-linked (PDN) hydrogels composed of crystalline domain cross-linked polyvinyl alcohol (PVA) and Ca2+-cross-linked alginate (Alg). With a further annealing treatment, the noncovalent cross-linked network via the formed crystalline promote the as-prepared PDN PVA/Alg hydrogel to exhibit well mechanical properties with the tensile strength of ~1.94 MPa, elongation at break of ~607% and Young's modulus of ~0.45 MPa (above 70 wt% of water content). By analyzing the mechanism of improving the hydrogel mechanical properties, it is found that annealing can effectively improve the crystallinity of PVA in the hydrogel, and then greatly improve the mechanical properties of the hydrogel. This provides a general method for improving the mechanical properties of PVA PDN hydrogels. In addition, the PDN PVA/Alg hydrogel was also proved to have good ionic conductivity of 1.70 S m−1. These desirable properties make the prepared physically cross-linked hydrogels promising materials for medical and biosensing fields.  相似文献   

6.
Water-soluble nanospheres with poly(acrylic acid) (PAA) coronas were prepared from poly(2-cinnamoylethyl methacrylate)-block-PAA (PCEMA-b-PAA) and P(CEMA-ran-OEMA)-b-PAA, where “ran” denotes the random incorporation of 2-octanoylethyl methacrylate (OEMA) into the PCEMA block. These nanospheres and polystyrene-block-PAA micelles uptake perylene, a polycyclic aromatic hydrocarbon (PAH), from water. The nanospheres or micelles, with the sorbed perylene, are precipitated by CaCl2. These nanospheres may be useful in concentrating PAHs present in trace amounts in water for chemical analysis or in the reclamation of water contaminated by PAHs. Investigated in this article are factors that govern the capacities of the nanospheres and micelles, and the critical calcium concentration for inducing nanosphere or micelle precipitation. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 397–408, 1998  相似文献   

7.
Hydrophobically modified water-soluble block copolymers were prepared by aqueous micellar copolymerization of acrylamide and small amounts (2 and 3 mol %) of a hydrophobe (N-phenethylacrylamide) that is characterized by a long spacer that places the aromatic ring far away from the backbone, with the objective of investigating the copolymers' rheological behavior and surface and interfacial activities under various conditions such as polymer concentration, shear rate, temperature, and salinity. As expected, the block copolymers exhibit improved thickening properties attributed to intermolecular hydrophobic associations as the solution viscosity of the copolymers increases sharply with increasing polymer concentration. Additional evidence for intermolecular association is provided by the effect of NaCl, the presence of which substantially enhances the viscosity. An almost shear rate–independent viscosity (Newtonian plateau) is also exhibited at high shear rate and a typical non-Newtonian shear thinning behavior appears at low shear rates and high temperatures. Furthermore, the block copolymers exhibit high air–liquid surface and liquid–liquid interfacial activities as the surface and interfacial tensions decrease with increasing polymer concentration, indicating strong adsorption of the copolymer at the interface. The surface and interfacial tensions exhibited by the copolymers were found to be relatively insensitive to the concentration of salt (NaCl). © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 467–476, 2001  相似文献   

8.
Well-defined pH- and thermo- multi-responsive fluorescent micelles based on the self-assembly of diblock copolymers poly[(N-isopropyl-acrylamide-co-N-vinylcarbazole)-b-2-(dimethylamino)ethyl acrylate], (PNIPAAM-co-PNVC)-b-PDMAEA, are described. The diblock copolymers are prepared via the reversible addition fragmentation chain transfer (RAFT) copolymerization of N-isopropyl-acrylamide (NIPAAM) and N-vinylcarbazole (NVC) followed by chain extension in presence of 2-(dimethylamino)ethyl acrylate) (DMAEA). The micelles are formed in aqueous solutions in a wide range of temperature (25-60 °C), and their sizes increase from 40 to 65 nm when varying pH from basic to acidic. The cross-linking of the PDMAEA-containing shell with 1,2-bis(2-iodoethoxy)ethane (BIEE) results in spherical soft nanoparticles which size is increased by 20-25% when compared to the micelles. The presence of NVC in concentrations as low as 4% in the core of the micelles allow the nanoparticles to be tagged by fluorescence, making them well suited for therapeutic applications.  相似文献   

9.
Xiang Yu 《Polymer》2005,46(24):11149-11156
Hexa-armed star block copolymers, s-[poly(l-lactide)-b-poly(styrene-co-N-acryloxysuccinimide)]6 (s-[PLLA-b-poly(St-co-NAS)]6) with triphenylene core have been successively prepared by the combination of ring-opening polymerization and atom transfer radical copolymerization, and they were used in the self-assembly in tetrahydrofuran, and the micelles with triphenylene core and PLLA as inner layer as well as poly(St-co-NAS) as shell were formed. After shell was cross-linked, PLLA was hydrolyzed in aqueous NaOH solution, the hollow spheres were formed. The structures, molecular weight and polydispersity index of the polymers were characterized by their 1H NMR and FT-IR spectra, as well as GPC. Their morphologies were studied by TEM. The influence factors on the formation of various morphologies are under investigation.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号