首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The shear viscosity of carbon black filled polypropylene with a range of different carbon blacks was investigated. This was accomplished using (a) a constant shear stress creep instrument, (b) a cone-plate rotational rheometer, (c) a capillary extrusion rheometer. It was found that stresses exist for these compounds below which there are only finite deformations and no steady flow, Much attention was given to measurements of creep at low stresses, especially in the neighborhood of yield values. The magnitudes of yield stresses obtained from such creep measurements are significantly lower than those obtained using standard extrapolation to zero shear rate of higher stress data from rotational instruments. The shear viscosity behavior near the yield value differs significantly depending upon the carbon black used. A high viscosity was observed (~109 to 1010 Pa.s) plateau in some compounds.  相似文献   

2.
This work investigates the effect of transport properties in sheared granular flows with adding different silicone oils. We performed a series of experiments in a shear cell device using 2-mm soda lime beads as the granular materials by adding little amount of different silicone oils. The viscosity of silicone oils added was changed in different tests. By particle tracking method, the velocities, the velocity fluctuations and the self-diffusion coefficients were measured and analyzed. It was found that for the granular system with adding the more viscous silicone oil, the system became less active due to the greater shear force and cohesive force, which resulted in the decrease of velocity fluctuations and diffusions. Three bi-directional stress gages were installed to the upper wall to measure the normal and shear stresses of the granular materials along the upper wall. Thus, the effective viscosities of the wet granular material systems could be evaluated. The dimensionless normal and shear stresses, and the effective viscosity in the wet sheared granular flow were found to decrease with the increase of the viscosity of the added silicone oil. The influence of the viscosity of added fluid on these transport properties of wet granular systems will be discussed.  相似文献   

3.
The effect of the stearic acid coated fillers and their geometry on the shear/dynamic viscosity and complex viscosity has been investigated using polypropylene (PP) compounds filled with stearic acid uncoated and coated talc, calcite, and mixed talc/calcite particles. The viscosity was measured over a wide range of shear rates (10?8 to 103) using a capillary, cone‐plate and sandwich rheometer. Overall, the rheological properties of the compounds exhibited different behavior upon different filler systems, stearic acid involvement, shear stress or strain, and frequencies due to stearic acid involvement. This implies that the stearic acid lowers the interfacial force between the filler surface and the resin matrix, followed by a favorable processing. In addition, at very low shear stresses, the viscosity of talc(un) compounds was higher than calcite(un) ones; at very high shear stresses, on the other hand, talc compounds became lower than calcite(un) compounds. This is interpreted as due to the different geometry between talc and calcite. The yield value as a function of shear stress was observed for all filler systems and exhibited lower than that obtained from the extrapolation. Furthermore, the Cox–Merz relation between the complex and shear viscosity for both the stearic acid uncoated and coated compounds is found not valid. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2105–2113, 2004  相似文献   

4.
Model suspensions with different concentrations of the rheological additives Aerosil 380 in silicone oil M20 000 and Bentone 27 in epoxy resin Araldite GY260 were researched. The shear stress and the first normal stress difference were measured simultaneously with shear flow start‐up experiments followed by stress relaxation. At higher concentrations, the rheological additives build a strong three‐dimensional (3D) structure that leads to systems with plastic flow behavior. It was established that the structure of 7.5% Aerosil 380 in silicone oil M20 000 is strong and stiff due to the big difference between shear stress and normal stress at small shear rates. This solid‐like system exhibits only one yield stress region. It was found that the suspensions with a strong 3D structure and comparable values of shear stress and first normal stress difference at small shear rates have a first and a so‐called second yield stress regions. In the transition section, between the two yield stress regions, there occurs a break of the distortion and a rearrangement of the structure. The decrease and increase of the first normal stress difference also belongs to the rearrangement of the structure. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

5.
In this study, polyindole (PIN) and polyindole/kaolinite (PIN/KAO) composite were synthesized by free radical polymerization using FeCl3 as an initiator. Average particle sizes (d50) of PIN and PIN/KAO composite were determined by dynamic light scattering (DLS) as 7.2 and 6.2 μm, respectively. The samples were characterized by FTIR, elemental analysis, DSC/TGA and SEM measurements. Suspensions of KAO, PIN, and PIN/KAO composite were prepared in silicone oil (SO) and the sedimentation stabilities were determined. Electrorheological (ER) properties of these suspensions were studied as a function of dispersed phase concentration, shear rate, shear stress, and temperature; and yield stresses and excess shear stresses determined. Further, dielectric properties of KAO, PIN, and PIN/KAO composite were investigated. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

6.
When the temperature of a solution of paraffins in oil is dropped below the ‘cloud point’ temperature, the high molecular weight n-paraffin molecules precipitate out of solution, crystallize and form a gel. The gelation and concomitant deposition of these paraffin gels in crude oil pipelines poses a major transportation problem by reducing the flow efficiency. Implementation of mechanical methods of remediation of paraffin deposition requires knowledge of the gel strength. Rheometric studies were performed on a model system to study the yield strength of paraffin-oil gels formed under various shear and thermal histories. It was observed that when the gel was formed under quiescent (shut-in) conditions, the yield stress of the gel decreased with an increasing cooling rate. However, when a shear stress was exerted on the gel during cooling (as would be experienced in a flow line), the trend of the yield stress vs. cooling rate curve was strongly influenced by the magnitude of this shear stress. Additionally, experimentation over a range of applied shear stresses revealed that the yield stress of the gel reaches a maximum at a moderate value of the applied shear. These rheometric results are explained with the help of 3-D polarized light microscopy observations of the paraffin crystal structure formed under various shear and cooling conditions using static and flow cell systems. The effects of crystal size on the gel properties are enunciated.  相似文献   

7.
The rheological properties of calcium carbonate-filled polypropylene has been examined using a Rheometrics dynamic analyzer RDAII. The study included a steady shear test, a transient stress growth test, and a dynamic oscillatory shear flow. Yield behavior was observed in all kinds of rheological tests for highly filled compounds when the volume loading exceeded a critical value at about 20%. The empirical Cox-Merz rule, which is usually applicable to an unfilled polymer, was found to be invalid for highly filled compounds. The modified Cox-Merz rule, in which the apparent viscosity versus the shear rate is equal to the complex viscosity versus the frequency-amplitude in the nonlinear region, was found to be valid only for highly filled compounds. The viscosity and the apparent yield values appear to increase with increasing volume loading of filler particles. The surface treatment of fillers, which presumably reduces the interaction between filler particles and the extent of agglomeration, results in major viscosity reductions and decreases in apparent yield values. The yield values determined from various tests are not the same. The results are interpreted in terms of a system forming a filler network due to weak inter-particle forces. The yield stress resulting from the breakdown and recovery of the network is thus dependent on the characteristic time of the individual test.  相似文献   

8.
Seong Gi Kim  Jun Hee Sung  Yongsok Seo 《Polymer》2007,48(22):6622-6631
Dodecylbenzene-sulfonic acid (DBSA)-doped polyaniline (PANI) was prepared by emulsion polymerization, where DBSA was used as both an emulsifier and a dopant. The chemical structure and morphology of the DBSA were examined via FT-IR and SEM, respectively. Electrorheological (ER) properties of DBSA-doped PANI particles dispersed in silicone oil were studied under different operating temperatures and an applied electric field. Shear stress data as a function of shear rate fitted quite well with the Cho-Choi-Jhon (CCJ) shear stress model. Both deduced static and dynamic yield stresses were found to be collapsed into a universal scaling function. Furthermore, the Cole-Cole plot and the dielectric spectra gave relaxation times of the ER systems for different operating temperatures of dielectric measurements, confirming the correlation of dielectric properties with ER performance.  相似文献   

9.
Composite heterophase poly(vinyl alcohol) (PVA) cryogels containing entrapped small droplets of Vaseline oil have been prepared and studied. Such oil‐filled cryogels were formed via freeze–thaw treatment of freshly prepared oil‐in‐water emulsions containing varied volume fraction of lipophilic phase, and the influence of the amount of this phase, as well as the effects of freezing conditions on the physicomechanical (shear moduli) and thermal (gel fusion temperature and fusion enthalpy) characteristics of resulting composites have been explored. It was shown that over certain range of PVA concentrations in aqueous phase and a range of volume fraction of the hydrophobic phase its microdroplets performed as “active” fillers causing an increase in both the gel strength and the heat endurance of composites. The light microscopy data on the morphological features of such filled PVA cryogels revealed the effect of diminution in size of oil droplets entrapped in the gel matrix as compared with the initial emulsions. This effect can be explained by the disintegrating action of crushing and shear stresses arising upon the system freezing and growth of ice crystals. The oil‐filled PVA cryogels were found to be capable of gradually releasing the lipophilic constituents (the Rose hips oil, in this case) in response to the cyclic mechanical compression. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
The rheological properties of polystyrene melts filled with 30 vol % of CaCO3 particles of varying particle size are described. The influence of surface coating the particles with stearic acid is considered. Generally, the compounds with the uncoated particles exhibit viscosities which increase at ever greater rates as the shear rates decrease. It appears that these compounds exhibit yield values. Elongational flow data also suggest the existence of yield values. Difficulties exist in measurement of normal stresses in compounds with sizeable yield values. The principal normal stress difference at fixed shear stress of the PS/CaCO3 compounds is lower than that of the PS melt. The magnitude of viscosity increases and yield values increase with decreasing particle size. Coating of particles with stearic acid results in major viscosity reductions and decreases in apparent yield values. The surface coating is most effective with the smallest particles. It presumably reduces interaction between particles and the extent of aggregation.  相似文献   

11.
Butyl adhesives are widely used to bond elastomeric membranes. The results of uniaxial tension tests and simple shear tests conducted on bulk samples of butyl adhesives are presented in this paper. Butyl adhesives were found to have a rate-sensitive mechanical response with very low tensile and shear strengths. The stress-strain curves of the adhesive are characterized by an initial elastic response followed by a region of large plastic flow. A three-element viscoelastic model was used to model the stress-strain behavior of the adhesive. The model effectively combines a viscous dashpot and a network spring to capture the plastic flow in the material after the initial yield. The parameters of the model are calibrated to simulate a wide range of mechanical response of the adhesive.  相似文献   

12.
A broad range of experiments on carbon black filled polystyrene melts shows the reinforcing effect of the filler. This study represents one of the most extensive investigations of a series of highly filled polymer melts. Stress relaxation and dynamic experiments characterize the small strain behavior while the steady state shear viscosity, normal stresses, and elongational flow experiments describe the large strain deformation rate response. Extrudate swell and unconstrained shrinkage of extrudates are also measured. Highly filled systems exhibit yield values. This is seen in the dynamic experiments and in the shear and elongational viscosities. Viscosity does not level off at finite values with decreasing deformation rate but continues to increase in an approximately inverse manner. This corresponds to yield values of order 5 × 105 dynes/cm2. The storage modulus also does not tend to zero at low frequencies. The small strain dynamic properties and stress relaxation results suggest high memories for small strain experiments. Txtrudate swell values are however small and the systems exhibit minimal delayed recovery. The implications of this are considered. Generally it is argued that at volume loadings between 10 and 20 percent, the system takes on the characteristics of a gel and the response is similar to that of a Schwedoff body.  相似文献   

13.
The flow stresses and relaxed yield stresses of saturated, alumina powder compacts that have been consolidated via pressure filtration were measured in unconstrained uniaxial compression. Two different sized powders, as well as binary mixtures of the two powders, were investigated. Bodies that were consolidated from slurries of larger particles had lower flow and relaxed yield stresses, relative to bodies that were made of small particles with the same relative density and solution conditions. This result is primarily due to the lower number of particle-particle contacts per unit volume in the body that was made of the large particles. The flow stress of the body can be controlled by adjusting the fraction of large particles to small particles.  相似文献   

14.
The influence of fillers like clay, silica, and carbon black on the rheological properties of 1,2 polybutadiene has been studied using a capillary rheometer. Silica filled compound exhibited the highest viscosity and clay filled compound the lowest viscosity at all shear rates. The effect of filler loading and temperature on the Theological behavior has also been studied. Smooth extrudates were obtained in most of the cases and die swell was lower for silica and carbon black filled compounds than for clay filled compounds. Rheograms of different 1,2 polybutadiene systems have been found to merge into a master curve using modified viscosity and shear rate functions that contain melt flow index as a parameter.  相似文献   

15.
The uniaxial extensional flow behavior of polystyrene/low density polyethylene blends (PS/LDPE) was studied using a Rheometrics Extensional Rheometer, Model RER-9000, at 150°C within the range of the extension rates $ \dot \varepsilon $ = 0.0005 to 1.0 (s?1). The measurements were repeated several times at each deformation rate to ascertain reliability. The effect of the suspending silicone oil was found to be negligible.  相似文献   

16.
The absorption of oxygen and styrene in water-silicone oil emulsions was independently studied in laboratory-scale bubble reactors at a constant gas flow rate for the whole range of emulsion compositions (0-10% v/v). The volumetric mass transfer coefficients to the emulsions were experimentally measured using a dynamic absorption method. It was assumed that the gas phase contacts preferentially the water phase. In the case of oxygen absorption, it was found that the addition of silicone oil hinders oxygen mass transfer compared to an air-water system. Decreases in kLaoxygen of up to 25% were noted. Such decreases in the oxygen mass transfer coefficient, which imply longer aeration times to transfer oxygen, could represent a limiting step in biotechnological processes strongly dependent on oxygen concentration. Nevertheless, as the large affinity of silicone oil for oxygen enables greater amounts of oxygen to be transferred from the gas phase, it appears that the addition of more than 5% silicone oil should be beneficial to increase the oxygen transfer rate. In the case of styrene absorption, it was established that the volumetric mass transfer coefficient based on the emulsion volume is roughly constant with the increase in the emulsion composition. In spite of the relatively high cost of silicone oil, water-silicone oil emulsions remain relevant to treat low-solubility volatile organic compounds, such as styrene, in low-concentration gas streams.  相似文献   

17.
The influences of fillers and nucleating agents on crystalline structure and stress induced crystallization of isotactic polypropylene were studied under a range of cooling and processing conditions, including die extrusion and melt spinning. Continuous cooling transformation curves were determined for polypropylene and various polypropylene filler compounds. The influence of spinline stress on crystallization was studied. The experiments reveal that under quiescent conditions, the kinetics and crystalline forms produced by the crystallization of polypropylene are dominated by nucleating fillers and impurities. The crystalline orientation‐spinline stress relationship, on the other hand, was found to be the same for polypropylene and its compounds. At high uniaxial stresses, kinetics and orientation development are dominated by homogeneous orientation crystallization.  相似文献   

18.
Suspensions of copolyaniline containing ethoxy group, namely poly(aniline-co-o-ethoxyaniline), in silicone oil have been investigated as one of many potential candidates for dry-base electrorheological (ER) fluid systems. The copolyanilines were synthesized by a chemical oxidation of aniline and o-ethoxyaniline with various molar ratios in an acidic media, and the characteristics of these polymers were examined by using several techniques. By using FT-IR, SEM, and a particle size analyzer, we studied chemical structure, particle size, and the particle size distribution of the copolymer, respectively. A Physica rheometer equipped with a high voltage generator was also adopted to measure the rheological properties of ER fluids using the copolyaniline. Controlled shear stress mode was used for the shear rate sweep measurement, and the copolyaniline synthesized in this study was found to give a typical ER behavior, that is, shear stresses increase with increasing electric fields and volume fractions.  相似文献   

19.
Styrene‐acrylonitrile copolymer (SAN)/clay nanocomposites were synthesized through an emulsion copolymerization of styrene and acrylonitrile in the presence of sodium montmorillonite, and their physical properties and electroresponsiveness under an applied electric field were characterized. Thermogravimetric analysis (TGA) showed that the thermal stability of the synthesized polymer was sustained. X‐ray diffraction (XRD) analysis confirmed the insertion of SAN into the interlayers of clay, whose separation consequently increased, as compared to those of the pristine clay. Transmission electron microscopy (TEM) was used to observe the suspended state of clay. Dry‐base electrorheological (ER) fluids were prepared by mixing intercalated SAN nanocomposite particles into silicone oil. Typical ER behavior, i.e., enhancement of shear and yield stresses in the presence of an applied electric field, was observed using a rotational rheometer equipped with a high‐voltage generator. A universal yield stress scaling equation was also found to fit our experimental data well. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 821–827, 2003  相似文献   

20.
In order to elucidate the flow behavior of electrophotographic toner systems, shear stress was measured as a function of shear rate in a cone and plate rheometer for polymer melts containing carbon blacks of surface area 24 and 625 m2/g at several concentrations and temperatures. Polymers included high and low molecular weight polystyrene and poly(butyl methacrylate). The addition of carbon black to the polymers caused a large increase in viscosity, especially at low shear rates and shear stresses. As the concentration of carbon black was increased, the viscosity at low shear rates became unbounded below a value of the shear stress designated the yield stress. The absolute magnitude of the yield stress depended primarily on the concentration and surface area of the carbon black and was independent of the polymer and temperature. Apparently, carbon black forms an independent network within the polymer at low shear rates which precludes flow. In some cases, the viscosity of polymers filled with carbon black was lower than that of the pure polymer. This effect was favored for polystyrene compared to poly(butyl methacrylate) and was facilitated by increasing the molecular weight of polystyrene, reducing the surface area and concentration of carbon black, and by increasing the temperature and shear rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号