首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to investigate the effect of silver nanoparticles (AgNPs) incorporation on the flexural strength (FS) of poly(methyl methacrylate) (PMMA). PMMA specimens (65 mm × 10 mm × 3.3 mm for flexural test, 50 mm × 6 mm × 4 mm for impact test) containing different sizes (40, 50, 60 nm) and concentrations (0.05%, 0.2%) of AgNPs were prepared, along with a control group with no AgNP. Impact strength (IS) and FS of all specimens were measured, and one‐way ANOVA and Tukey–Kramer post hoc multiple comparisons tests were used to identify any statistical differences between groups. The addition of AgNPs has no effect on IS of PMMA. The incorporation of AgNPs affected the FS of PMMA depending on the concentration of nanoparticles. The addition of large‐sized nanoparticles to PMMA increases its FS. Accordingly, adding AgNP with proper concentrations to PMMA may enhance the mechanical properties of denture bases used in clinical practice. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45807.  相似文献   

2.
Seoudi  R.  Althagafi  H. A. 《SILICON》2018,10(5):2165-2171

In this work, silver nanoparticles (AgNPs) were prepared with different particle sizes (6 nm, 11 nm, and 14 nm) using chemical methods. The morphology, distribution, and account sizes have been studying from transmission electron microscope (TEM) images. The change of the surface Plasmon resonance (SPR) bands with the particle sizes clarified from ultraviolet-visible spectra. A thin film from copper phthalocyanine (CuPc) and their doped by AgNPs was done using thermal evaporation technique and spin coater under vacuum. The surface morphology of the films was studied using scanning electron microscope (SEM). Films tested as photovoltaics (PV) cells. It turns out that, the calculated efficiencies were (0.237%, 0.266%, and 0.280%) when the size of AgNPs was (6 nm, 11 nm, and 14 nm) respectively. We concluded that the large size of AgNPs increases the efficiency of CuPc thin films due to the increase of the scattering and low reflection of the incident light at the surface of the thin films.

  相似文献   

3.
Consumer products manufactured with antimicrobial silver nanoparticles (AgNPs) may affect the gastrointestinal (GI) system. The human GI-tract is complex and there are physiological and anatomical differences between human and animal models that limit comparisons between species. Thus, assessment of AgNP toxicity on the human GI-tract may require tools that allow for the examination of subtle changes in inflammatory markers and indicators of epithelial perturbation. Fresh tissues were excised from the GI-tract of human male and female subjects to evaluate the effects of AgNPs on the GI-system. The purpose of this study was to perform an assessment on the ability of the ex vivo model to evaluate changes in levels of pro-/anti-inflammatory cytokines/chemokines and mRNA expression of intestinal permeability related genes induced by AgNPs in ileal tissues. The ex vivo model preserved the structural and biological functions of the in-situ organ. Analysis of cytokine expression data indicated that intestinal tissue of male and female subjects responded differently to AgNP treatment, with male samples showing significantly elevated Granulocyte-macrophage colony-stimulating factor (GM-CSF) after treatment with 10 nm and 20 nm AgNPs for 2 h and significantly elevated RANTES after treatment with 20 nm AgNPs for 24 h. In contrast, tissues of female showed no significant effects of AgNP treatment at 2 h and significantly decreased RANTES (20 nm), TNF-α (10 nm), and IFN-γ (10 nm) at 24 h. Smaller size AgNPs (10 nm) perturbed more permeability-related genes in samples of male subjects, than in samples from female subjects. In contrast, exposure to 20 nm AgNPs resulted in upregulation of a greater number of genes in female-derived samples (36 genes) than in male-derived samples (8 genes). The ex vivo tissue model can distinguish sex dependent effects of AgNP and could serve as a translational non-animal model to assess the impacts of xenobiotics on human intestinal mucosa.  相似文献   

4.
Silver nanoparticles (AgNPs) are used commercially in a variety of applications, including textiles, cosmetics, spray cleaning agents, and metal products. AgNP itself, however, is classified as an environmental hazard by Environmental Protection Agency (EPA, USA) Nanotechnology White Paper, due to its toxic, persistent and bioaccumulative characteristics when exposed to the environment. We investigated the cumulative mortality and abnormalities in Japanese medaka (Oryziaslatipes) embryos after exposure to AgNPs. Free AgNPs in solution have a high activity with respect to biological interactions regarding blocking blood flow and distribution of AgNPs into the cells from head to tail of hatched O. latipes. Interestingly, the agglomeration of AgNPs (loss of nanosized characteristics) played an important role in the environmental toxicity. The present study demonstrated that when the AgNPs were exposed in the ecosystem and then formed agglomerates, nanotoxicity was reduced.  相似文献   

5.
Silver nanoparticles pose a potential risk to ecosystems and living organisms due to their widespread use in various fields and subsequent gradual release into the environment. Only a few studies have investigated the effects of silver nanoparticles (AgNPs) toxicity on immunological functions. Furthermore, these toxic effects have not been fully explored. Recent studies have indicated that zebrafish are considered a good alternative model for testing toxicity and for evaluating immunological toxicity. Therefore, the purpose of this study was to investigate the toxicity effects of AgNPs on innate immunity using a zebrafish model and to investigate whether the natural compound pterostilbene (PTE) could provide protection against AgNPs-induced immunotoxicity. Wild type and neutrophil- and macrophage-transgenic zebrafish lines were used in the experiments. The results indicated that the exposure to AgNPs induced toxic effects including death, malformation and the innate immune toxicity of zebrafish. In addition, AgNPs affect the number and function of neutrophils and macrophages. The expression of immune-related cytokines and chemokines was also affected. Notably, the addition of PTE could activate immune cells and promote their accumulation in injured areas in zebrafish, thereby reducing the damage caused by AgNPs. In conclusion, AgNPs may induce innate immune toxicity and PTE could ameliorate this toxicity.  相似文献   

6.
ZrO2(Y2O3)超细粉末性能的表征   总被引:1,自引:0,他引:1  
葛荣德  朱宣惠 《硅酸盐通报》1992,11(6):10-14,32
  相似文献   

7.
Alwan  Alwan M.  Wali  Layla A.  Yousif  Ali A. 《SILICON》2018,10(5):2241-2251

In this study, the effects of the sizes of AgNPs and the resulting hotspot nanogaps on the SERS spectra have been studied extensively. The optimal condition of AgNPs/mesoPS active substrate for efficient, high reproducibility and excellent stability was obtained at lowest nanogaps. The maximum EFs of about 1.4 × 105 and 1.2 × 105 were obtained for 10− 5 M Cy3 dye solution concentration at two average AgNP sizes of (282.95 and 338.1) nm and corresponding average nanogaps of (22.28 and 26.43) nm respectively. The better reproducibility with minimum variation of SERS intensity of about (14%) after six month aging in air was obtained for more uniform AgNPs deposited on mesoPS surface with peak nanogaps of 10 nm at 8 min immersion time. The detection limit for Cy3 dye molecules adsorbed on AgNPs/mesoPS active substrate prepared at 8 min has been evaluated as 10− 14 M and the high EF of about 5.3 × 1012 was obtained when using this concentration.

  相似文献   

8.
This study focuses on the modification of a commercial nanofiltration (NF) membrane by an in-situ reaction to load silver nanoparticles (AgNPs) for anti-biofouling. Poly (vinyl alcohol) (PVA) was coated onto the NF membrane firstly, and silver salt was then deposited on the surface of PVA layer. Through thermal reduction, AgNPs with 10–20 nm in diameter were formed and immobilized onto the membrane surface by the interaction between AgNPs and PVA, as confirmed by UV–vis absorption spectrum, SEM and XPS analysis. Compared to the pristine NF90 membrane, the PVA composite membranes (NF90-PVA) and AgNPs (NF90-PVA-AgNPs) modified membranes exhibit lower water flux and slightly higher salt rejection. Release of silver ion experiments were assessed via batch method, and the results indicate silver ion can be released from the AgNPs modified membrane continuously and steadily, which may be responsible for the improved and long-time antibacterial ability of the membrane. Due to the simplicity of the method, the ability to immobilize the AgNPs to avoid leaching out, and the strong antibacterial activity, this NF90-PVA-AgNPs composite membrane displays potential applications in industrial water-treatment.  相似文献   

9.
Seven biological methods were adopted (three bacterial activities of bioluminescence, enzyme, enzyme biosynthetic, algal growth, seed germination, and root and shoot growth) to compare the toxic effects of two different sizes of silver nanoparticles (AgNPs). AgNPs showed a different sensitivity in each bioassay. Overall, the order of inhibitory effects was roughly observed as follows; bacterial bioluminescence activity ≈ root growth > biosynthetic activity of enzymes ≈ algal growth > seed germination ≈ enzymatic activity > shoot growth. For all bacterial activities (bioluminescence, enzyme, and enzyme biosynthesis), the small AgNPs showed statistically significantly higher toxicity than the large ones (p < 0.0036), while no significant differences were observed among other biological activities. The overall effects on the biological activities (except shoot growth) of the small AgNPs were shown to have about 4.3 times lower EC50 (high toxicity) value than the large AgNPs. These results also indicated that the bacterial bioluminescence activity appeared to be an appropriate method among the tested ones in terms of both sensitivity and the discernment of particle sizes of AgNPs.  相似文献   

10.
Zr-based metal-organic framework (Zr-MOF) nanoparticles (NPs) have attracted extensive research thanks to their outstanding thermal and chemical stability, but their efficient synthesis is still challenging. Here, high-quality Zr-MOF NPs with tunable and uniform particle sizes can be successfully fabricated within 30 min by high-gravity technology with high yields. Significantly, the rapidly milder preparation of UiO-66 NPs can also be achieved at 90 or 70°C. This strategy has been extended to the synthesis of other Zr-MOF NPs. Furthermore, the water vapor adsorption properties of obtained UiO-66 NPs display a size-dependent effect. The 70 nm UiO-66 NPs have the highest adsorption capacity of 625 mg g−1 among unmodified UiO-66 reported so far, and manifest 2.0–2.8 times faster water adsorption rate than the micron ones. This study provides a feasible method for the efficient and mild preparation of MOFs nanoparticles, which may promote the synthesis and applications of nano-sized MOFs.  相似文献   

11.
尺寸分布均一的碳量子点由于其良好的光学特性,在光电设备、离子检测、纳米传感器、生物成像和催化剂等领域具有广阔的应用前景。采用陶瓷膜“超滤-纳滤”双膜法,对微波合成的碳量子点进行分离和纯化。研究了pH对碳量子点料液荧光强度和粒径分布的影响。在pH=3时,碳量子点分散较好,荧光强度较高。陶瓷超滤膜可以有效截留碳量子点料液中的大颗粒杂质,渗透侧的碳量子点平均粒径约为2 nm,分散良好,无团聚现象。陶瓷纳滤膜对碳量子点具有良好的截留性能,在浓缩和水洗过程中可以进一步去除料液中的小分子杂质。经双膜法处理后,发射光谱由多峰分布变为单峰分布,且峰宽变窄,碳量子点的发光纯度得到了明显提高。  相似文献   

12.
《Polymer Composites》2017,38(5):1014-1026
To produce well‐defined metal clusters stabilized in protective matrix, poly(N‐isopropylacrylamide) (PNiPAAm) hydrogel with different initial concentration of polymer was used as nanoreactor. The in situ synthesis of well dispersed silver nanoparticles (AgNPs) was performed by gamma irradiation. The obtained AgNPs are spherical in shape with the diameter less than 20 nm. Crystalline properties of nanoparticles such as size, texture coefficient, strain, stress, lattice parameter, d‐spacing, and dislocation density have been calculated using XRD data. Results confirm that the changes of lattice parameter of crystalline AgNPs sensitively reflect their state of strain and stress depending on the formation conditions (i.e., on the concentration of PNiPAAm) and on the diameter of AgNPs. The negative lattice strain and compression stress were observed for the smaller AgNPs (lattice contraction), while for the larger AgNPs are positively strained and under tensile stress (lattice expansion). XPS spectra revealed the donor‐acceptor type of interaction between carbonyl oxygen from PNiPAAm and AgNPs (positive shift of high BE component of O 1s and negative shift of Ag 3d BE). The greater dislocation density of smaller AgNPs incorporated in more concentrated PNiPAAm, resulted in more binding sites and stronger interaction with polymer. POLYM. COMPOS., 38:1014–1026, 2017. © 2015 Society of Plastics Engineers  相似文献   

13.
Silver nanoparticles (AgNPs)‐loaded calcium alginate beads embedded in gelatin scaffolds were developed to sustain and maintain the release of silver (Ag+) ions over an extended time period. The UV irradiation technique was used to reduce Ag+ ions in alginate solution to AgNPs. The average sizes of AgNPs ranged between ca 20 and ca 22 nm. The AgNPs‐loaded calcium alginate beads were prepared by electrospraying of a sodium alginate solution containing AgNPs into calcium chloride (CaCl2) solution. The AgNPs‐loaded calcium alginate beads were then embedded into gelatin scaffolds. The release characteristics of Ag+ ions from both the AgNPs‐loaded calcium alginate beads and the AgNPs‐loaded calcium alginate beads embedded in gelatin scaffolds were determined in either deionized water or phosphate buffer solution at 37 °C for 7 days. Moreover, the AgNPs‐loaded calcium alginate beads embedded in gelatin scaffolds were tested for their antibacterial activity and cytotoxicity. © 2014 Society of Chemical Industry  相似文献   

14.
We report synthesis of colloids with polymer core and inorganic shell consisting of silver nanoparticles (AgNPs) which can be used as building blocks for the preparation of conducting composite films. Polymer colloids based on copolymer of styrene and butyl acrylate with variable film formation temperature and functional surface have been prepared by surfactant-free emulsion polymerization. Polymer particles with average size between 140 nm and 220 nm and narrow size distribution were used as templates for deposition of AgNPs by microwave-assisted reduction of silver precursors in aqueous medium. The loading of the AgNPs on the polymer particle surface has been increased up to 60 wt.-%. Obtained hybrid colloids were used for preparation of composite films. The electrical conductivity of the composite films starts to increase if the AgNPs loading on the polymer particle surface is above 20 wt.-%.  相似文献   

15.

Background

The study investigated the distribution of silver after 28 days repeated oral administration of silver nanoparticles (AgNPs) and silver acetate (AgAc) to rats. Oral administration is a relevant route of exposure because of the use of silver nanoparticles in products related to food and food contact materials.

Results

AgNPs were synthesized with a size distribution of 14 ± 4 nm in diameter (90% of the nanoparticle volume) and stabilized in aqueous suspension by the polymer polyvinylpyrrolidone (PVP). The AgNPs remained stable throughout the duration of the 28-day oral toxicity study in rats. The organ distribution pattern of silver following administration of AgNPs and AgAc was similar. However the absolute silver concentrations in tissues were lower following oral exposure to AgNPs. This was in agreement with an indication of a higher fecal excretion following administration of AgNPs. Besides the intestinal system, the largest silver concentrations were detected in the liver and kidneys. Silver was also found in the lungs and brain. Autometallographic (AMG) staining revealed a similar cellular localization of silver in ileum, liver, and kidney tissue in rats exposed to AgNPs or AgAc. Using transmission electron microscopy (TEM), nanosized granules were detected in the ileum of animals exposed to AgNPs or AgAc and were mainly located in the basal lamina of the ileal epithelium and in lysosomes of macrophages within the lamina propria. Using energy dispersive x-ray spectroscopy it was shown that the granules in lysosomes consisted of silver, selenium, and sulfur for both AgNP and AgAc exposed rats. The diameter of the deposited granules was in the same size range as that of the administered AgNPs. No silver granules were detected by TEM in the liver.

Conclusions

The results of the present study demonstrate that the organ distribution of silver was similar when AgNPs or AgAc were administered orally to rats. The presence of silver granules containing selenium and sulfur in the intestinal wall of rats exposed to either of the silver forms suggests a common mechanism of their formation. Additional studies however, are needed to gain further insight into the underlying mechanisms of the granule formation, and to clarify whether AgNPs dissolve in the gastrointestinal system and/or become absorbed and translocate as intact nanoparticles to organs and tissues.  相似文献   

16.
Silver nanoparticles (AgNPs) have promising potential in biomedicine, energy science, optics, and health care applications. We synthesized AgNPs using plant, Kalopanax pictus leaf extract. UV-visible spectrophotometric study showed the characteristic peak for AgNPs at wavelength 430 nm. The optical density at 430 nm increased after addition of plant leaf extract, indicating increase in formation of nanoparticles. Comparative time course analyses for AgNP synthesis carried out at different reaction temperatures (20, 60, and 90 °C) revealed higher reaction rate for K. pictus than Magnolia kobus plant leaf extract, which showed highest AgNP synthesis rate in the previous report. Electron microscopy analyses confirmed the presence of well dispersed AgNPs, predominantly with spherical shapes. In transmission electron microscopy, the particle size decreased with increase in temperature. Electron dispersive X-ray spectroscopy analyses indicated that Ag content increased with increase in reaction temperature. Fourier transform-infrared spectroscopy studies revealed capping of bioorganics from plant to the synthesized AgNPs. The antimicrobial activity of the synthesized AgNPs against Escherichia coli increased with increase in reaction temperature. The observations in this study will prove beneficial in approaching rapid synthesis of AgNPs and their antimicrobial application.  相似文献   

17.
借助聚焦光束反射测量仪(FBRM)和颗粒录影显微镜(PVM)对丁二酸冷却结晶过程中的聚结现象进行研究,通过加晶种实验和不加晶种实验初步推断大小颗粒的共存及颗粒间的相互结合力是形成聚结需要考虑的两个因素。在此基础上,将3种类型的表面活性剂十六烷基三甲基溴化铵(CTAB)、十二烷基苯磺酸钠(SDBS)和吐温80(Tween80)加入到丁二酸冷却结晶系统,考察了表面活性剂对结晶过程中颗粒聚结的抑制作用。晶体形貌变化表明,所选的表面活性剂均能吸附于晶体表面,且可大大降低聚结,可推测表面吸附产生的机械隔离能够降低晶体间的相互结合力,并促使结晶产品的粒度更为均匀。这一研究证明添加表面活性剂可降低结晶过程的聚结程度。  相似文献   

18.
The effects of particle size of titanium dioxide (TiO2) on mechanical, thermal, and morphological properties of pure polyoxymethylene (POM) and POM/TiO2 nanocomposites were investigated and compared with the results for nanoparticle ZnO in the same matrix, reported in a previous paper. POM/TiO2 nanocomposites with varying concentration of TiO2 were prepared by the melt mixing technique in a twin screw extruder, the same method that used for blending the homogeneous ZnO nanocomposites. The dispersion of TiO2 particles in POM nanocomposites was studied by scanning electron microscopy (SEM). The agglomeration, as observed by the mechanical properties of TiO2 particles in the polymer matrix, increased with increasing TiO2 content, a result not found for ZnO even at lower particle sizes. Increasing the filler content of POM/TD32.4 and POM/TD130 (130 nm) nanocomposites resulted in a decrease in tensile strength. The Young modulus, stress at break and impact strength of TiO2 nanocomposite did not improve with increasing filler contents, in opposition to the better agglomeration conditions of ZnO nanocomposite even at lower particle sizes. Because of agglomeration, the POM/TD32.4 nanocomposites had lower mechanical properties and lower degradation temperature than the POM/TD130 ones. The sizes of nanoparticles determined the agglomeration, but however, the agglomeration also depended on the type of nanoparticles, even when using the same matrix (POM) and the same mixing method. TiO2 nanoparticles were more difficult to mix and were more agglomerated in the POM matrix as compared to ZnO nanoparticles, regardless of the size of the nanoparticles. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
With advances in nanotechnology, pure silver has been recently engineered into nanometer‐sized particles (diameter <100 nm) for use in the treatment of wounds. In conjunction with other studies, we previously demonstrated that the topical application of silver nanoparticles (AgNPs) can promote wound healing through the modulation of cytokines. Nonetheless, the question as to whether AgNPs can affect various skin cell types—keratinocytes and fibroblasts—during the wound‐healing process still remains. Therefore, the aim of this study was to focus on the cellular response and events of dermal contraction and epidermal re‐epithelialization during wound healing under the influence of AgNPs; for this we used a full‐thickness excisional wound model in mice. The wounds were treated with either AgNPs or control with silver sulfadiazine, and the proliferation and biological events of keratinocytes and fibroblasts during healing were studied. Our results confirm that AgNPs can increase the rate of wound closure. On one hand, this was achieved through the promotion of proliferation and migration of keratinocytes. On the other hand, AgNPs can drive the differentiation of fibroblasts into myofibroblasts, thereby promoting wound contraction. These findings further extend our current knowledge of AgNPs in biological and cellular events and also have significant implications for the treatment of wounds in the clinical setting.  相似文献   

20.
Since antiquity, silver-based therapies have been used in wound healing, wound care and management of infections to provide adequate healing. These therapies are associated with certain limitations, such as toxicity, skin discolouration and bacterial resistance, which have limited their use. As a result, new and innovative wound therapies, or strategies to improve the existing therapies, are sought after. Silver nanoparticles (AgNPs) have shown the potential to circumvent the limitations associated with conventional silver-based therapies as described above. AgNPs are effective against a broad spectrum of microorganisms and are less toxic, effective at lower concentrations and produce no skin discolouration. Furthermore, AgNPs can be decorated or coupled with other healing-promoting materials to provide optimum healing. This review details the history and impact of silver-based therapies leading up to AgNPs and AgNP-based nanoformulations in wound healing. It also highlights the properties of AgNPs that aid in wound healing and that make them superior to conventional silver-based wound treatment therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号