首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纳米材料修饰阳极可显著提高微生物燃料电池(MFC)性能,本研究主要探索了石墨烯、聚苯胺和石墨烯/聚苯胺复合修饰电极对MFC产电性能的影响。使用电化学方法电镀石墨烯于碳布表面,进一步通过原位聚合法制备聚苯胺来修饰碳布电极。将修饰电极装载入双室型MFC中,测量其产电性能,并对电极进行表征,测量电化学性能。通过扫描电镜观察到, 碳布能够被修饰上石墨烯和聚苯胺,并且聚苯胺附着于碳纤维或石墨烯薄层表面,形成棒状的纳米结构。产电性能方面,装载石墨烯/聚苯胺修饰电极的MFC最大输出电压最高,达到了(291±22)mV,比装载空白碳布电极的对照组MFC提高了175%以上。石墨烯/聚苯胺电极组MFC的最大输出功率密度同样最高,达到了(653 ± 25)mW·m-2,为空白碳布对照组的10.5倍。实验结果表明:石墨烯/聚苯胺复合修饰电极可有效利用石墨烯导电性好和聚苯胺生物相容性高的优点,显著提高MFC的产电性能。  相似文献   

2.
以十二烷基磺酸钠为阳极电子供体,同时以石墨烯为催化剂对电极进行修饰。将修饰前后微生物燃料电池的产电性能和十二烷基磺酸钠的降解情况进行对比,经过修饰的电极装置产电效率明显增大,最大电压增加了1倍,并使十二烷基磺酸钠的降解率从49.85%提高到65.11%。这说明用石墨烯修饰后的微生物燃料电池在稳定产电的同时降解十二烷基磺酸钠是可行的,为废水中阴离子表面活性剂的去除提供了新的方法与研究方向。  相似文献   

3.
以十二烷基磺酸钠为阳极电子供体,同时以石墨烯为催化剂对电极进行修饰。将修饰前后微生物燃料电池的产电性能和十二烷基磺酸钠的降解情况进行对比,经过修饰的电极装置产电效率明显增大,最大电压增加了1倍,并使十二烷基磺酸钠的降解率从49.85%提高到65.11%。这说明用石墨烯修饰后的微生物燃料电池在稳定产电的同时降解十二烷基磺酸钠是可行的,为废水中阴离子表面活性剂的去除提供了新的方法与研究方向。  相似文献   

4.
霍庆城  黄仁亮  齐崴  苏荣欣  何志敏 《化工学报》2016,67(10):4406-4412
微生物燃料电池(MFC)是一种利用微生物将有机物中的化学能直接转化成电能的装置,通过改善阳极特性可以有效提高微生物燃料电池的产电性能。通过恒电流法电沉积制备了氧化石墨烯/聚3,4-乙烯二氧噻吩(GO/PEDOT)复合材料修饰碳毡(CF)阳极。通过循环伏安法和交流阻抗法考察了电极特性。将其应用到微生物燃料电池中,对其产电性能进行评价。结果表明,GO/PEDOT-CF电极具有较大的比表面积和优良的电化学性能;以GO/PEDOT-CF为阳极的微生物燃料电池,产电性能良好,其最大功率密度和最大电流密度达到1.138 W·m-2和4.714 A·m-2,分别是未修饰阳极的4.80倍和5.51倍。因此,GO/PEDOT复合材料是一种优良的阳极修饰材料,可有效提高MFC的产电性能。  相似文献   

5.
纳米材料修饰阳极可显著提高微生物燃料电池(MFC)性能,本研究主要探索了石墨烯、聚苯胺和石墨烯/聚苯胺复合修饰电极对MFC产电性能的影响。使用电化学方法电镀石墨烯于碳布表面,进一步通过原位聚合法制备聚苯胺来修饰碳布电极。将修饰电极装载入双室型MFC中,测量其产电性能,并对电极进行表征,测量电化学性能。通过扫描电镜观察到,碳布能够被修饰上石墨烯和聚苯胺,并且聚苯胺附着于碳纤维或石墨烯薄层表面,形成棒状的纳米结构。产电性能方面,装载石墨烯/聚苯胺修饰电极的MFC最大输出电压最高,达到了(291±22) mV,比装载空白碳布电极的对照组MFC提高了175%以上。石墨烯/聚苯胺电极组MFC的最大输出功率密度同样最高,达到了(653±25) mW·m~(-2),为空白碳布对照组的10.5倍。实验结果表明:石墨烯/聚苯胺复合修饰电极可有效利用石墨烯导电性好和聚苯胺生物相容性高的优点,显著提高MFC的产电性能。  相似文献   

6.
微生物燃料电池(MFC)是一种利用微生物将有机物中的化学能直接转化成电能的装置,通过改善阳极特性可以有效提高微生物燃料电池的产电性能。通过恒电流法电沉积制备了氧化石墨烯/聚3,4-乙烯二氧噻吩(GO/PEDOT)复合材料修饰碳毡(CF)阳极。通过循环伏安法和交流阻抗法考察了电极特性。将其应用到微生物燃料电池中,对其产电性能进行评价。结果表明,GO/PEDOT-CF电极具有较大的比表面积和优良的电化学性能;以GO/PEDOT-CF为阳极的微生物燃料电池,产电性能良好,其最大功率密度和最大电流密度达到1.138W·m?2和4.714 A·m?2,分别是未修饰阳极的4.80倍和5.51倍。因此,GO/PEDOT复合材料是一种优良的阳极修饰材料,可有效提高MFC的产电性能。  相似文献   

7.
介绍了碳纳米管、石墨烯及二氧化钛等新型复合纳米材料的特性和结构,简述了新型复合纳米材料部分制备方法。通过分析不同材料作为微生物燃料电池电极的性能,对未来微生物燃料电池电极材料提出展望。认为微生物燃料电池是一种新兴的废水处理与产电技术,完善电极材料的设计及制备是提高其性能最有效的方法之一。指出新兴复合纳米材料在微生物燃料电池中的方向应更具有针对性的水质,今后的发展方向和研究重点是微生物燃料电池的规模化、复合纳米材料的经济性、稳定性以及生物相容性等。  相似文献   

8.
石墨烯/聚苯胺复合阳极的制备及在MFC中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
采用化学氧化还原法制备高纯度石墨烯(GR),利用电化学修饰法得到石墨烯/聚苯胺(GR/PANI)膜阳极,采用红外光谱(FI-IR)、X射线衍射(XRD)、场发射扫描电镜(FESEM)对所制备复合电极进行了表征,采用循环伏安法(CV)、交流阻抗法(EIS)考察了复合电极的电化学性能。将GR/PANI膜阳极应用于固定床微生物燃料电池(MFC),考察了电池的产电性能。均匀地附着在石墨烯表面,GR/PANI膜电极具有良好可逆性,其电阻小、导电性良好。GR/PANI膜阳极应用于MFC,最大功率密度和开路电压分别为230.2 mW·m-2和834.6 mV,比未修饰阳极的最大功率密度和开路电压分别提高了110.6%和34.8%,GR/PANI膜阳极的表观内阻也由未修饰阳极的843.2Ω降低为469.4 Ω,且电池启动时间大大缩短,产电稳定性增强。结果表明,GR/PANI复合物是一种优良的电极材料,GR/PANI膜阳极MFC具有良好的产电性能。  相似文献   

9.
微生物燃料电池作为新型微生物传感器,既能降解水中污染物也可以通过微生物产电输出电能。通常将污染物降解效率和产电功率作为衡量燃料电池性能好坏的重要参数,反应器构型是影响微生物燃料电池产电性能与降解效果的关键。归纳了光电极微生物燃料电池、自分层微生物燃料电池和人工湿地-微生物燃料电池这3种构型的反应器机理及对废水的适用性,总结了电极材料、电子介体、分隔膜材料等因素对燃料电池产电性能影响的研究进展。  相似文献   

10.
阳极作为微生物燃料电池的重要组成部分,其性能直接影响微生物燃料电池的产电效率。主要综述了聚苯胺、聚吡咯等导电聚合物及其复合物修饰微生物燃料电池阳极材料的最新研究进展,对修饰材料的特点与性能进行了分析,最后对导电聚合物修饰微生物燃料电池阳极进行了展望。  相似文献   

11.
单室直接微生物燃料电池的阴极制作及构建   总被引:4,自引:0,他引:4  
在研制含铁离子阴极电极板的基础上,构建了单室直接微生物燃料电池. 通过实验考察了单室无介体微生物燃料电池的产电规律及阴极板中铁离子含量对产电的影响. 实验证明,单室直接微生物燃料电池是可行的,电能的输出主要依赖吸附在电极表面的细菌形成的生物膜,而与悬浮在溶液中的细菌及溶液中的其他物质基本无关. 在单室无介体微生物燃料电池的阴极板中添加铁离子,通过铁离子在二价和三价间的循环转化,提高了电子的传递速率,加快了质子和氧气的反应,电池的输出功率达到14.58 mW/m2.  相似文献   

12.
分别用恒电流、恒电位、循环伏安法、电沉积与恒电流相结合等电化学方法,制备了新型碳纤维布基聚吡咯修饰电极,用扫描电子显微镜( SEM)观察了其表面形貌,研究了吡咯在碳纤维布基上的聚合条件和膜的生长过程,研究了聚吡咯修饰电极对氟离子的电流响应特性.结果表明:用电沉积与恒电流相结合的方法制备的碳纤维布基聚吡咯膜具有致密性好、...  相似文献   

13.
本文以氧化石墨烯为原料,抗坏血酸为还原剂,通过水热法制备石墨烯水凝胶并冻干制得石墨烯气凝胶,以此为载体聚合聚吡咯作为锌电池正极活性物质,从而得到聚吡咯-石墨气凝胶电极材料。通过扫描电子显微镜、X射线衍射、电化学工作站对其进行结构表征与电化学性能测试。结果表明聚吡咯-石墨气凝胶正极材料具有多孔结构,赋予锌电池优异的电化学特性与循环性能。  相似文献   

14.
微生物燃料电池(MFCs)的启动及产电性能直接影响其应用于对实际废水的处理。以屠宰厂废水为基质研究了循环伏安扫描对单室空气阴极微生物燃料电池启动和产电性能的影响。结果表明:经过24 h CV扫描的MFCs其启动时间比常规电阻(1000 Ω)直接启动的MFCs缩短了71.4%(从420 h缩短至120 h),MFCs最大功率密度提高了21.5%,达到37.8 W·m-3。通过电极生物量测定和生物膜表面形貌观察发现,经CV扫描的阳极生物量显著提高且生物膜的产电菌占优势是MFCs性能提高的主要原因。说明CV扫描不断促进产电菌在阳极表面的吸附,而且增加产电微生物的生长速度。这一技术为发展MFCs的快速启动和提升MFCs的产电性能提供了新思路。  相似文献   

15.
采用化学氧化还原法制备高纯度石墨烯(GR),利用电化学修饰法得到石墨烯/聚苯胺(GR/PANI)膜阳极,采用红外光谱(FI-IR)、X射线衍射(XRD)、场发射扫描电镜(FESEM)对所制备复合电极进行了表征,采用循环伏安法(CV)、交流阻抗法(EIS)考察了复合电极的电化学性能。将GR/PANI膜阳极应用于固定床微生物燃料电池(MFC),考察了电池的产电性能。均匀地附着在石墨烯表面,GR/PANI膜电极具有良好可逆性,其电阻小、导电性良好。GR/PANI膜阳极应用于MFC,最大功率密度和开路电压分别为230.2 mW·m-2和834.6 mV,比未修饰阳极的最大功率密度和开路电压分别提高了110.6%和34.8%,GR/PANI膜阳极的表观内阻也由未修饰阳极的843.2Ω降低为469.4Ω,且电池启动时间大大缩短,产电稳定性增强。结果表明,GR/PANI复合物是一种优良的电极材料,GR/PANI膜阳极MFC具有良好的产电性能。  相似文献   

16.
微生物燃料电池是将废水中有机物的化学能转化为电能,在去除污染物的同时将产生的电能回收,实现了能量转化。本文系统介绍了微生物燃料电池的研究进展,在对微生物燃料电池的产电微生物、电极材料、微生物燃料电池的放大、微生物燃料电池的实际应用等方面总结的基础上,指出了微生物燃料电池研究的发展方向,其中筛选改造产电微生物对不同底物的耐受性和适应性、开发廉价高效的电极材料、构造大型微生物燃料电池堆以及微生物电化学物质合成等是未来研究的重点。  相似文献   

17.
结合微生物燃料电池研究进展,从提高微生物燃料电池的产电性能出发,讨论了目前微生物燃料电池发展的主要限制因素和应用前景。对影响微生物燃料电池产电性能的4个主要影响因素,电池构型、阳极室(电活性微生物、阳极材料)、阴极室(电子受体、催化剂)、阴阳极分隔材料进行了分析。认为目前对于低成本的电极材料和构型的扩大研究较少,微生物燃料电池由于其成本较高、产能较低,仍然难以进行实际的扩大应用。开发出低成本的电极材料和催化剂,并在实际应用中将其与其他水处理技术进行耦合应是是未来微生物燃料电池的研究重点。在此基础上,建立和优化微生物燃料电池数学模型,深入研究堆叠式微生物燃料电池产生的电压反转的原因也会对未来这一技术的改进提供可靠的帮助。  相似文献   

18.
微生物生物电化学系统通过电能和化学能的相互转化,实现发电、制氢、化学合成、废水处理、海水淡化和修复。基于高导电性、稳定性和生物相容性等要求,微生物燃料电池新型电极材料不仅应具有较大的比表面积和开放式多孔结构,还要有利于细胞外电子转移的亲和表面。本文综述了微生物燃料电池电极材料的研究开发进展,重点讨论了新型三维电极材料的设计制造与微生物活性、产电性能的优化。  相似文献   

19.
微生物燃料电池产电的影响因素   总被引:11,自引:1,他引:10  
以输出功率和内阻为评价指标,考察了直接微生物燃料电池在间歇运行过程中pH值、底物浓度、电极间距和添加电解质对产电性能的影响. 结果表明,pH值对输出功率影响较大,最佳值为7.5;输出功率随底物浓度的增大而增大.减小电极间距能有效降低电池内阻,提高输出功率,当电极间距为2 cm时,最大功率密度为700 mW/m2,内阻为80 W,库仑效率为7.7%. 磷酸盐缓冲溶液作为电解质对功率提高的效果优于NaCl,其添加量为100 mmol/L时,最大功率密度达922 mW/m2,内阻为70 W,库仑效率为11.5%.  相似文献   

20.
张波  陈君  卢启威  杨晖 《化工进展》2008,27(5):765-769
通过采用传统电化学燃料电池的技术和材料,以寻求提高微生物燃料电池的电流密度,制作基于膜电极的微生物燃料电池。通过构建温控压力机,制作了一系列膜电极(MEA),并对作为正极的多种碳材料进行了筛选。使用定制的玻璃微生物燃料电池来放置膜电极和培养Geobacter sulfurreducens,对产生的电流进行评价。细胞的生长以乙醇为唯一碳源,因而代表了一种新型的乙醇/氧气燃料电池。相比以前的设计,基于膜电极的微生物燃料电池的电极表面每个单位会多产生出100倍的电流,并且可以被长久使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号