首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gadolinium zirconate is a promising next-generation thermal barrier coating material and its CaO-MgO-Al2O3-SiO2 (CMAS) resistance needs to be further increased. In this study, three gadolinium zirconate coatings with different Gd/Zr ratios are successfully prepared via atmospheric plasma spray using amorphous feedstock. Their mechanical properties and corrosion resistance are investigated. The Young’s moduli and hardness of as-sprayed coatings are comparable with the gadolinium zirconate coatings reported in previous literature. Furthermore, the higher Gd content promotes the formation of the Gd-apatite and the depletion rate of CMAS corrosion. As a result, the infiltration depth of Gd2.3Zr1.7O6.85 coating after 24 h annealing decreases up to 35 % compared with those of Gd2.0Zr2.0O7.0 and Gd1.8Zr2.2O7.1, exhibiting an enhanced long-term corrosion resistance. This work develops a viable fabrication method to produce non-stoichiometric gadolinium zirconate coatings with tailorable CMAS corrosion resistance and is expected to promote the future design of thermal barrier coatings with long service life.  相似文献   

2.
Calcium–magnesium–alumina–silicate (CMAS) corrosion resistance is an important issue on the design of next-generation thermal battier coatings. As one of the promising thermal battier coatings, the lanthanum zirconate coating has attracted continuous attention. In this work, three lanthanum zirconate coatings with different La/Zr composition, i.e., La1.8Zr2.2O7.1, La2Zr2O7, and La2.5Zr1.5O6.75, are fabricated by laser-enhanced chemical vapour deposition, and their resistance to CMAS corrosion at 1250?°C is investigated. Among them, La2.5Zr1.5O6.75 shows the best CMAS corrosion resistance because increased La content is beneficial to the formation of a dense and continuous apatite Ca2La8(SiO4)6O2 layer, which effectively slows down the subsequent molten CMAS penetration. This study clarifies the significant role of rare earth on CMAS corrosion resistance and is expected to guide the future design of rare-earth-based thermal battier coatings through composition tailoring.  相似文献   

3.
In application as a thermal barrier coating (TBC), yttria stabilised zirconia (YSZ) approaches some limits of performance. To further enhance the efficiency of gas turbines, higher temperature capability and a longer lifetime of the coating are needed for the next generation of TBCs. Pyrochlore oxides of general composition, A2B2O7, where A is a 3+ cation (La to Lu) and B is a 4+ cation (Zr, Hf, Ti, etc.) have high melting point, fair coefficient of thermal expansion, and low thermal conductivity which make them suitable for applications as high temperature thermal barrier coatings. Among those oxide materials lanthanum zirconate (LZ/La2Zr2O7) offers very attractive properties. This work describes the fabrication, microstructure and high temperature (1280 °C) thermal cycling behaviour of lanthanum zirconate coatings with five different coating architectures, deposited using atmospheric plasma spray process. The coating architecture which had five layers with two intermixed interlayers had much longer life time than other considered architectures. The coatings were characterised using X-ray diffraction, energy dispersive spectrometry, optical and scanning electron microscopy, before and after thermal cycling tests, to study the coating failure mechanisms.  相似文献   

4.
The study set out to investigate the compositional inconsistency in lanthanum zirconate system revealed the presence of nonstoichiometry in lanthanum zirconate powders when synthesized by coprecipitation route. X‐ray diffraction (XRD) and high‐resolution transmission electron microscopy (HRTEM) investigations confirmed the depletion of La3+ ions in the system. Analysis using Vegard's law showed the La/Zr mole ratio in the sample to be around 0.45. An extra step of ultrasonication, introduced during the washing stage followed by the coprecipitation reaction, ensured the formation of stoichiometric La2Zr2O7. Noteworthy is also the difference between crystal sizes in the samples prepared by with and without ultrasonication step. This difference has been explained in light of the formation of individual nuclei and their scope of growth within the precipitate core. The differential scanning calorimetry (DSC) analyses revealed that optimum pH for the synthesis of La2Zr2O7 is about 11. The ultrasonication step was pivotal in assuring consistency in mixing and composition for the lanthanum zirconate powders.  相似文献   

5.
The CaO-MgO-Al2O3-SiO2 (CMAS) corrosion of thermal barrier coatings (TBCs) is a crucial problem for the lifetime of blades and vanes of jet engine and gas turbine at high operating temperature. Although many new alternative materials for TBCs have been developed in recent years, their application is limited by the CMAS corrosion. On the other hand, the composition difference of CMAS between regions makes solving this problem very difficult. Therefore, in this study, the yearly composition changes of sand-dust around Beijing area were investigated. The high-temperature corrosion behavior of air-plasma-sprayed 8YSZ and newly developed (LaxYb1−x)2Zr2O7 TBCs by the representative sand-dust of Beijing was investigated. In comparison, a universally used CaO-riched composition of simulated silicate deposit was also adopted for the TBCs corrosion test. It is found that the (LaxYb1−x)2Zr2O7 TBCs performs much better anti-corrosion behavior than that of 8YSZ, both by Beijing sand-dust and simulated one. Particularly, Yb2Zr2O7 TBCs appear to be the optimum material against silicate deposits attack. The mechanism of silicate deposits corrosion has also been discussed.  相似文献   

6.
Nanostructured 30 mol% LaPO4 doped Gd2Zr2O7 (Gd2Zr2O7-LaPO4) thermal barrier coatings (TBCs) were produced by air plasma spraying (APS). The coatings consist of Gd2Zr2O7 and LaPO4 phases, with desirable chemical composition and obvious nanozones embedded in the coating microstructure. Calcium-magnesium-alumina- silicate (CMAS) corrosion tests were carried out at 1250 °C for 1–8 h to study the corrosion resistance of the coatings. Results indicated that the nanostructured Gd2Zr2O7-LaPO4 TBCs reveals high resistance to penetration by the CMAS melt. During corrosion tests, an impervious crystalline reaction layer consisting of Gd-La-P apatite, anorthite, spinel and tetragonal ZrO2 phases forms on the coating surfaces. The layer is stable at high temperatures and has significant effect on preventing further infiltration of the molten CMAS into the coatings. Furthermore, the porous nanozones could gather the penetrated molten CMAS like as an absorbent, which benefits the CMAS resistance of the coatings.  相似文献   

7.
The corrosion resistance to calcium-magnesium-alumino-silicates (CMAS) is critically important for the thermal barrier coatings (TBCs). High-entropy zirconate (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 (HEZ) ceramics with low thermal conductivity, high coefficient of thermal expansion and good durability to thermal shock is expected to be a good candidate for the next-generation TBCs. In this work, the CMAS corrosion of HEZ at 1300°C was firstly investigated and compared with the well-studied La2Zr2O7 (LZ). It is found that the HEZ ceramics showed a graceful behavior to CMAS corrosion, obviously much better than the LZ ceramics. The HEZ suffered from CMAS corrosion only through dissolution and re-precipitation, while additional grain boundary corrosion existed in the LZ system. The precipitated high-entropy apatite showed fine-grained structure, resulting in a reaction layer without cracks. This study reveals that HEZ is a promising candidate for TBCs with extreme resistance to CMAS corrosion.  相似文献   

8.
In this work, the corrosion behavior, interaction products, and the corrosion mechanism of (1-x)SrZrO3-xLa2Ce2O7(x = 0.3, S7L3; x = 0.5, S5L5; x = 0.7, S3L7) composite bulks after CaO-MgO-Al2O3-SiO2 (CMAS) attack at 1250°C for 1, 4, and 12 h were investigated, respectively. The molten CMAS and the bulks rapidly interacted and generated a dense reaction layer, which mainly composed of La-Ce apatite, Ce2Zr2O7.04, ZrO2 with some Ce, Ca, Si, Mg, and Al elements preventing CMAS from continuous penetration effectively. The formation of CMAS self-crystallizing products such as Ca2Al2SiO7 gehlenite and Mg-Al spinel with high melting points increased the viscosity of CMAS. The elements in the ceramic also diffused into the molten CMAS and formed Ce2Zr2O7.04 and La2Ce2O7, increasing the melt viscosity and blocking the penetration channel of the molten CMAS. The S5L5 bulk has the best corrosion resistance against CMAS attacks.  相似文献   

9.
Degradation of yttria-stabilized zirconia (YSZ) layers by molten CaO-MgO-Al2O3-SiO2 (CMAS)-based deposits is an important failure mode of thermal barrier coating (TBC) systems in modern gas turbines. The present work aimed to understand how the chemical purity and microstructure of plasma-sprayed YSZ layers affect their response to CMAS corrosion. To this end, isothermal corrosion tests (1 h at 1250 °C) were performed on four different kinds of YSZ coatings: atmospheric plasma-sprayed (APS) layers obtained from standard- and high-purity feedstock powders, a dense – vertically cracked (DVC) layer, and a suspension plasma sprayed (SPS) one. Characterization of corroded and non-corroded samples by FEG-SEM, EBSD and micro-Raman spectroscopy techniques reveals that, whilst all YSZ samples suffered grain-boundary corrosion by molten CMAS, its extent could vary considerably. High chemical purity limits the extent of grain-boundary dissolution by molten CMAS, whereas high porosity and/or fine crystalline grain structure lead to more severe degradation.  相似文献   

10.
A novel negative temperature coefficient material based on lanthanum zirconate ceramics was proposed for high-temperature applications. This material was synthesized through a solid-state reaction by sintering at 1923 K for 10 h in air. The X-ray diffraction and scanning electron microscopy results confirmed that La2Zr2O7 ceramics exhibited a pyrochlore phase with a relative density of 98.2 %. The resistance–temperature characteristics of the material revealed that La2Zr2O7 ceramics exhibited an NTC feature within the broad temperature range of 973–1773 K in addition to maintaining high thermal constant B, and resistivity to ensure good sensitivity at high temperatures. These properties, along with high ceiling temperature, unique oxygen insensitivity, and excellent ageing coefficient of <0.7 % at 1773 K, render La2Zr2O7 ceramics a promising candidate as thermistor materials with high-temperature NTC.  相似文献   

11.
We report a double-ceramic-layer (DCL) thermal barrier coating (TBC) with high-entropy rare-earth zirconate (HE-REZ) as the top layer and yttria stabilized zirconia (YSZ) as the inner layer sprayed on Ni-based superalloy by atmospheric plasma spraying. La2Zr2O7 (LZ) was selected as a reference for the HE-REZ. Thermal cycling test results demonstrate that the HE-REZ/YSZ DCL coating exhibited obviously improved thermal stability when compared to the LZ/YSZ DCL coating. The reasons for the improvement of the thermal shock resistance are considered to be the anti-sinterability of the HE-REZ ceramics during the thermal cycling test attributed to the sluggish diffusion effect and as well as the better match in the coefficient of thermal expansion of HE-REZ coating with the YSZ inner layer. In addition, the HE-REZ coating maintains fluorite structure after thermal cycling test. This study makes one step forward in the development and application of high-entropy rare-earth zirconate ceramic thermal barrier coatings.  相似文献   

12.
This paper compares the hot corrosion performance of yttria stabilized zirconia (YSZ), Gd2Zr2O7, and YSZ + Gd2Zr2O7 composite coatings in the presence of molten mixture of Na2SO4 + V2O5 at 1050 °C. These YSZ and rare earth zirconate coatings were prepared by atmospheric plasma spray (APS). Chemical interaction is found to be the major corrosive mechanism for the deterioration of these coatings. Characterizations using X-ray diffraction (XRD) and scanning electron microscope (SEM) indicate that in the case of YSZ, the reaction between NaVO3 and Y2O3 produces YVO4 and leads to the transformation of tetragonal ZrO2 to monoclinic ZrO2. For the Gd2Zr2O7 + YSZ composite coating, by the formation of GdVO4, the amount of YVO4 formed on the YSZ + Gd2Zr2O7 composite coating is significantly reduced. Molten salt also reacts with Gd2Zr2O7 to form GdVO4. Under a temperature of 1050 °C, Gd2Zr2O7 based coatings are more stable, both thermally and chemically, than YSZ, and exhibit a better hot corrosion resistance.  相似文献   

13.
The chemical interactions between porous (La0.8Sr0.2)MnO3 (LSM) film and 3 mol% yttria tetragonal zirconia (TZ3Y) substrate have been investigated over the temperature range of 1300–1500 °C in air. Two distinct reaction layers of fluorite-type cubic zirconia solid solution c-(Zr,Mn,La,Y)O2 and lanthanum zirconate pyrochlore (La,Sr)2(Zr,Y)2O7 were observed at the interface of LSM/TZ3Y. It has been found that the diffusion/dissolution of Mn ions in TZ3Y leads to the formation of the fluorite-type cubic zirconia solid solution, while the interaction of lanthanum with TZ3Y results in the formation of the lanthanum zirconate pyrochlore phase. Phase studies in the (ZrY)O2–La2O3–Mn3O4 system show that the fluorite-type cubic zirconia solid solution phase c-(Zr,Mn,La,Y)O2, rather than the tetragonal 3 mol% Y2O3–ZrO2 phase, is in equilibrium with LSM perovskite at high temperatures. A ternary phase diagram of the system at the (ZrY)O2-rich end at 1400 °C in air was proposed based on the experimental results. It is suggested that the fundamental reason for the beneficial effect of A-site non-stoichiometry or Mn excess of LSM in the inhibiting of the lanthanum zirconate formation is due to the fact that Mn3O4 does not equilibrate with lanthanum zirconate at high temperatures.  相似文献   

14.
《Ceramics International》2023,49(16):26397-26410
Inspired by the high entropy effects of high-entropy components, a novel high-entropy rare-earth zirconate (La1/5Gd1/5Y1/5Sm1/5Yb1/5)2Zr2O7 (HEC-LZ) was designed and successfully synthesized in this work. In addition, two binary rare-earth doped zirconates (RE-LZ), (La1/3Sm1/3Yb1/3)2Zr2O7 (LSYZ) and (La1/3Gd1/3Y1/3)2Zr2O7 (LGYZ), were proposed using the same rare-earth elements for comparison. The thermal barrier coatings with LZ-based ceramic top layer were prepared by spray granulation, solid-phase synthesis and atmospheric plasma spraying techniques. The as-synthesized LZ-based ceramics are all dominated by the pyrochlore phase. Under 1000 °C, the thermal cycling performances of the three coatings were studied. The microstructure evolution and crack expansion during the failure process were investigated in detail. The strengthening mechanism and the cause of coating spallation are proposed in combination with mechanical properties and thermal matching analysis. The results showed that compared with the undoped LZ coating, the thermal shock life of LGYZ coating, LSYZ coating and HEC-LZ coating is improved by nearly 46%, 27% and 57%, respectively. Due to the characteristics of high randomness, HEC-LZ ceramic has a large lattice distortion than RE-LZ ceramics, resulting in a higher coefficient of thermal expansion and fracture toughness, which contributes to maintaining the structure stability of coatings under thermal stress.  相似文献   

15.
《Ceramics International》2017,43(5):4048-4054
Zirconates with pyrochlore structure, such as Gd2Zr2O7, are new promising thermal barrier coatings because of their very low thermal conductivity and good chemical resistance against molten salts. However, their coefficient of thermal expansion is low, therefore their thermal fatigue resistance is compromised. As a solution, the combination of yttria-stabilised zirconia (YSZ) and Gd2Zr2O7 can reduce the thermal contraction mismatch between the thermal barrier coating parts.In the present study, two possible designs have been performed to combine YSZ/Gd2Zr2O7. On the one hand, a multilayer coating was obtained where YSZ layer was deposited between a Gd2Zr2O7 layer and a bond coat. On the other hand, a functionally-graded coating was designed where different layers with variable ratios of YSZ/Gd2Zr2O7 were deposited such that the composition gradually changed along the coating thickness.Multilayer and functionally-graded coatings underwent isothermal and thermally-cycled treatments in order to evaluate the oxidation, sintering effects and thermal fatigue resistance of the coatings. The YSZ/Gd2Zr2O7 multilayer coating displayed better thermal behaviour than the Gd2Zr2O7 monolayer coating but quite less thermal fatigue resistance compared to the conventional YSZ coating. However, the functionally-graded coating displays a good thermal fatigue resistance. Hence, it can be concluded that this kind of design is ideal to optimise the behaviour of thermal barrier coatings.  相似文献   

16.
《Ceramics International》2019,45(14):17409-17419
In order to explore the difference of CMAS corrosion resistance in high temperature and rainwater environment of single-layer and double-layer thermal barrier coatings (TBCs), and further reveal the mechanism of CMAS corrosion resistance in above environment of double-layer TBCs modified by rare earth, two TBCs were prepared by air plasma spraying, whose ceramic coating were single-layer ZrO2–Y2O3 (YSZ) and double-layer La2Zr2O7(LZ)/YSZ, respectively. Subsequently, CMAS corrosion resistance tests at 1200 °C and rainwater environment of two TBCs were carried out. Results demonstrate that after high temperature CMAS corrosion for the same time, due to phase transformation, the volume of YSZ ceramic coating in single-layer TBCs shrank and surface cracks formed, which would lead to coating failure. When LZ ceramic coating of double-layer TBCs reacted with CMAS, compact apatite phases and fluorite phases formed, the penetration of CMAS into ceramic coating was inhibited effectively. Raman analysis and calculation results show that both of the surface residual stress of ceramic coating in two TBCs were compressive stress, and the residual stress of ceramic coating in double-layer TBCs were smaller than that of single-layer TBCs. Atomic force microscopy of TBCs after CMAS corrosion show that surface of double-layer TBCs was more uniform and compact than that of single-layer TBCs. The electrochemical properties in simulated rainwater of two TBCs after high temperature CMAS corrosion showed that double-layer TBCs possessed higher free corrosion potential, lower corrosion current and higher polarization resistance than those of single-layer TBCs. Consequently, the presence of LZ ceramic coating effectively improved CMAS corrosion resistance in high temperature and rainwater environment of double-layer TBCs.  相似文献   

17.
La2Zr2O7 is a promising thermal barrier coating (TBC) material. In this work, La2Zr2O7 and 8YSZ-layered TBC systems were fabricated. Thermal properties such as thermal conductivity and coefficient of thermal expansion were investigated. Furnace heat treatment and jet engine thermal shock (JETS) tests were also conducted. The thermal conductivities of porous La2Zr2O7 single-layer coatings are 0.50–0.66?W?m?1?°C?1 at the temperature range from 100 to 900°C, which are 30–40% lower than the 8YSZ coatings. The coefficients of thermal expansion of La2Zr2O7 coatings are about 9–10?×?10?6?°C?1 at the temperature range from 200 to 1200°C, which are close to those of 8YSZ at low temperature range and about 10% lower than 8YSZ at high temperature range. Double-layer porous 8YSZ plus La2Zr2O7 coatings show a better performance in thermal cycling experiments. It is likely because porous 8YSZ serves as a buffer layer to release stress.  相似文献   

18.
Conventional and solution precursor plasma spraying (SPPS) techniques were employed for developing gadolinium oxide doped lanthanum cerate ((La0.9Gd0.1)2Ce2O7, Gd-LC) based double-layered thermal barrier coatings (TBCs). Hot corrosion studies of the above coatings were carried out in molten Na2SO4 + V2O5 (1:1) environment at 900 °C. The state-of-the-art yttria-stabilized-zirconia (YSZ) coating was found to be completely delaminated after 120 h by forming yttrium vanadate (YVO4) and m-ZrO2. The accelerated delamination of YSZ can be attributed to the undesired phase transformation during exposure to corrosive species. Double-layered APS coatings were found to last for more than 300 h without densification of underlying YSZ layer and also, show better adherence with bond coat. SPPS Gd-LC coatings were found to be completely delaminated on densifying the underlying YSZ within 300 h. Lanthanum vanadate (LaVO4) was found to be the main corrosive product along with minor amounts of gadolinium vanadate (GdVO4) in Gd-LC double-layer coatings.  相似文献   

19.
《Ceramics International》2022,48(8):11173-11180
In this study, first of all, a metallic bond layer was coated on the metal substrate using the HVOF method. Then, Gd and Yb doped La2Zr2O7 powders, which were specially produced to obtain a low thermal conductivity value, were coated on the metallic bond layer by atmospheric plasma spraying method. The coatings were produced in single-layer and double-layer designs using YSZ as the buffer layer. In the microstructure analysis, it was observed that the coatings exhibited the characteristic microstructure properties of the materials produced by atmospheric plasma spraying method. In the phase analysis, it was found that the Gd and Yb doped La2Zr2O7 was in the form of defect fluorite type structure after plasma spraying. The thermal conductivity of the YSZ coating ranged from 0.88 to 1.00 W/mK, while the thermal conductivity of the doped La2Zr2O7 coatings was measured between 0.38 and 0.68 W/mK. Especially, the lowest thermal conductivity values were obtained in the double-layer Gd doped coating. As a result of modeling these coatings on the piston surface of a diesel engine using the finite element method, it was found that the maximum and minimum surface temperatures of the pistons increased by 69% and 60%, respectively. There was also a reduction of up to 6.5% in the temperature of the piston substrate surface.  相似文献   

20.
Processing of Gd2Zr2O7 by atmospheric plasma spraying (APS) is challenging due to the difference in vapor pressure between gadolinia and zirconia. Gadolinia is volatilized to a greater extent than zirconia and the coating composition unfavorably deviates from the initial stoichiometry. Aiming at stoichiometric coatings, APS experiments were performed with a TriplexPro? plasma torch at different current levels. Particle diagnostics proved to be an effective tool for the detection of potential degrees of evaporation via particle temperature measurements at these varied current levels. Optimized spray parameters for Gd2Zr2O7 in terms of porosity and stoichiometry were used to produce double‐layer TBCs with an underlying yttria‐stabilized zirconia (7YSZ) layer. For comparison, double layers were also deposited with relatively high torch currents during Gd2Zr2O7 deposition, which led to a considerable amount of evaporation and relatively low porosities. These coatings were tested in thermal cycling rigs at 1400°C surface temperature. Double layers manufactured with optimized Gd2Zr2O7 spray parameters revealed very good thermal cycling performance in comparison to standard 7YSZ coatings, whereas the others showed early failures. Furthermore, different failure modes were observed; coatings with long lifetime failed due to TGO growth, while the coatings displaying early failures spalled through crack propagation in the upper part of the 7YSZ layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号