首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The axial concentration distribution of both particles with better wetting (forming non-attached systems) and poorer wetting (forming attached system) was investigated in a vertical gas-liquid-solid fluidized bed of 4.2cm in diameter and 130cm in height with the solids holdup less than 0.05. The one-dimensional sedimentation-dispersion model could be used satisfactorily to describe the axial distribution of solids holdup by modifying only a model parameter,i.e.by means of the terminal settling velocity minus a certain value,which is a function of gas velocity and considers the effect of an additional drag force resulted from attached rising bubbles.The axial profiles of solid concentration predicted are in good agreement with experimental results.This model also explains reasonably the different axial distribution of solid concentration,i.e.the solids holdup decreases as the axial height increases in non-attached system,but increases with the axial height in attached system at a given gas velocity.  相似文献   

2.
The axial concentration distribution of both particles with better wetting (forming non-attached system) and poorer wetting (forming attached system) was investigated in a vertical gas-liquid-solid fluidized bed of 4.2 cm in diameter and 130 cm in height with the solids holdup less than 0.05. The one-dimensional sedimentation-dispersion model could be used satisfactorily to describe the axial distribution of solids holdup by modifying only a model parameter, i.e. by means of the terminal settling velocity minus a certain value, which is a function of gas velocity and considers the effect of an additional drag force resulted from attached rising bubbles. The axial profiles of solid concentration predicted are in good agreement with experimental results. This model also explains reasonably the different axial distributions of solid concentration, i.e. the solids holdup decreases as the axial height increases in non-attached system, but increases with the axial height in attached system at a given gas veloc  相似文献   

3.
Based on trajectory equations of gas bubble, an eddy-bubble interaction (EBI) model was developed. This model considered the effect of non-drag forces and took the eddy-bubble interaction time as the refreshing time scale of turbulent fluctuations. The relationship between the crossing-eddy time and the eddy lifetime was discussed, and the predicted distributions of radial, axial ve-locities of bubbles and gas holdup were also given. Compared with eddy lifetime (EL) model, the EBI model gives somewhat smaller axial velocity in the upper circulation region and larger velocity in the lower circulation region, causing that fewer bubbles reach the lower circulation region and gas holdup becomes higher in the upper circulation region. The predicted gas holdup by the EBI model approaches closer to the experimental data in the discharge stream region.  相似文献   

4.
The impeller configuration with a six parabolic blade disk turbine below two down-pumping hydrofoil propellers, identified as PDT + 2CBY, was used in this study. The effect of the impeller diameter D, ranging from 0.30T to 0.40T (T as the tank diameter), on gas dispersion in a stirred tank of 0.48 m diameter was investigated by experimental and CFD simulation methods. Power consumption and total gas holdup were measured for the same impeller configuration PDT + 2CBY with four different D/T. Results show that with D/T increases from 0.30 to 0.40, the relative power demand (RPD) in a gas–liquid system decreases slightly. At low superficial gas velocity VS of 0.0078 m·s-1, the gas holdup increases evidently with the increase of D/T. However, at high superficial gas velocity, the systemwith D/T=0.33 gets a good balance between the gas recirculation and liquid shearing rate, which resulted in the highest gas holdup among four different D/T. CFD simulation based on the two-fluid model along with the Population Balance Model (PBM) was used to investigate the effect of impeller diameter on the gas dispersion. The power consumption and total gas holdup predicted by CFD simulation were in reasonable agreement with the experimental data.  相似文献   

5.
Experiments and simulations were conducted for bubble columns with diameter of 0.2 m(180 mm i.d.), 0.5 m(476 mm i.d.) and 0.8 m(760 mm i.d.) at high superficial gas velocities(0.12–0.62 m·s-1) and high solid concentrations(0–30 vol%). Radial profiles of time-averaged gas holdup, axial liquid velocity, and turbulent kinetic energy were measured by using in-house developed conductivity probes and Pavlov tubes. Effects of column diameter, superficial gas velocity, and solid concentration were investigated in a wide range of operating conditions. Experimental results indicated that the average gas holdup remarkably increases with superficial gas velocity, and the radial profiles of investigated flow properties become steeper at high superficial gas velocities. The axial liquid velocities significantly increase with the growth of the column size, whereas the gas holdup was slightly affected. The presence of solid in bubble columns would inhibit the breakage of bubbles, which results in an increase in bubble rise velocity and a decrease in gas holdup, but time-averaged axial liquid velocities remain almost the same as that of the hollow column. Furthermore, a 2-D axisymmetric k–ε model was used to simulate heterogeneous bubbly flow using commercial code FLUENT 6.2. The lateral lift force and the turbulent diffusion force were introduced for the determination of gas holdup profiles and the effects of solid concentration were considered as the variation of average bubble diameter in the model. Results predicted by the CFD simulation showed good agreement with experimental data.  相似文献   

6.
Zero net-liquid flow (ZNLF) is a special case of upward gas-liquid two-phase flow. It is a phenomenon observed as a gas-liquid mixture flows in a conduit but the net liquid flow rate is zero. Investigation on the liquid holdup of ZNLF is conducted in a vertical ten-meter tube with diameter of 76 mm, both for Newtonian and nonNewtonian fluids. The gas phase is air. The Newtonian fluid is water and the non-Newtonian fluids are water-based guar gel solutions. The correlations developed for predicting liquid holdup on the basis of Lockhart-Martinelli parameter are not suitable to ZNLF. A constitutive correlation for the liquid holdup of vertical ZNLF was put forward by using the mass balance. It is found that the liquid holdup in ZNLF is dependent on both the gas flow rate and the flow distribution coefficient.  相似文献   

7.
This paper presents the characteristics of a double helix capacitance sensor for measurement of the liquid holdup in horizontal oil–water two-phase flow. The finite element method is used to calculate the sensitivity field of the sensor in a pipe with 20 mm inner diameter and the effect of sensor geometry on the distribution of sensitivity field is presented. Then, a horizontal oil–water two-phase flow experiment is carried out to measure the response of the double helix capacitance sensor, in which a novel method is proposed to calibrate the liquid holdup based on three pairs of paral el-wire capacitance probes. The performance of the sensor is analyzed in terms of the flow structures detected by mini-conductance array probes.  相似文献   

8.
The hydrodynamics and mass transfer characteristics of a lab-scale jet bubbling reactor(JBR) including the gas holdup, volumetric mass transfer coefficient and specific interfacial area were assessed experimentally investigating the influence of temperature, p H and superficial gas velocity. The reactor diameter and height were 11 and 30 cm,respectively. It was equipped with a single sparger, operating at atmospheric pressure, 20 and 40℃, and two p H values of 3 and 6. The height of the liquid was 23 cm, while the superficial gas velocity changed within 0.010–0.040 m·s~(-1) range. Experiments were conducted with pure oxygen as the gas phase and saturated lime solution as the liquid phase. The liquid-side volumetric mass transfer coefficient was determined under unsteady-state oxygen absorption in a saturated lime solution. The gas holdup was calculated based on the liquid height change, while the specific interfacial area was obtained by a physical method based on the bubble size distribution(BSD) in different superficial gas velocities. The results indicated that at the same temperature but different p H, the gas holdup variation was negligible, while the liquid-side volumetric mass transfer coefficient at the p H value of 6 was higher than that at the p H = 3. At a constant p H but different temperatures, the gas holdup and the liquid-side volumetric mass transfer coefficients at 40℃ were higher than that of the same at 20℃. A reasonable and appropriate estimation of the liquid-side volumetric mass transfer coefficient(kla) in a pilot-scale JBR was provided which can be applied to the design and scale-up of JBRs.  相似文献   

9.
The gas and dispersed phase holdups and mass transfer coefficients of liquid-iquid were determined for gas-liquid-liquid three phase system in a screen plate column. The flow pattern of gas-liquid-liquid three phase system was studied under different gas velocities. The shape factors showed the geometric properties of screen plates and the corrected drop chaxacteristic velocities were introduced. The phase holdup in two phases was correlated.The research results indicated that mass transfer coefficient for liquid-liquid system in a column with screen plates and gas agitation was found to increase apparently.  相似文献   

10.
Towards the objective of improving the gas dispersion performance, the dislocated-blade Rushton impeller was applied to the gas–liquid mixing in a baffled stirred vessel. The flow field, gas hold-up, dissolved oxygen, power consumption before and after gassing were studied using the computational fluid dynamics (CFD) technique. Dispersion of gas in the liquid was modelled using the Eulerian–Eulerian approach along with the dispersed k–εturbulent model. Rotation of the impeller was simulated with the multiple reference frame method. A modified drag coefficient which includes the effect of turbulence was used to account for the momentum exchange. The predictions were compared with their counterparts of the standard Rushton impeller and were validated with the experimental results. It is concluded that the dislocated-blade Rushton impeller is superior to the standard Rushton impeller in the gas–liquid mixing operation, and the findings obtained here lay the basis of its application in process industries.  相似文献   

11.
1 INTRODUCTIONBubble diameter distribution and gas holdup are very important parameters indicatingthe characteristics of gas-liquid dispersion,works done are mostly experimentalobservation.Theoretical analysis of bubble diameter has been mostly focused on thebreak-up of bubbles in the impeller region,and only the theoretical relationship be-tween bubble diameter and operating variables in the impeller region has been reported  相似文献   

12.
针对SBS加氢反应器开发与设计,以SEBS-1650己烷溶液为液相,采用差压法和床层塌落法研究了气液鼓泡塔中高黏度溶液的流体力学行为,考察了黏度对低表面张力溶液的气含率、大小气泡气含率、大小气泡上升速度和比表面积等因素的影响。结果表明,随黏度增加,大气泡增多,气含率明显降低,塔内流型处于湍流区;由床层塌落曲线确定鼓泡塔内存在三种类型的气泡:大气泡、小气泡及细小气泡,随黏度增加,小气泡与细小气泡逐渐减少;黏度对大小气泡的上升速度略有影响,比表面积随黏度增加而明显降低。根据实验结果给出了大小气泡气含率与平均气含率的计算公式。  相似文献   

13.
板式塔降液管中高气含率两相流研究   总被引:6,自引:0,他引:6  
设计了盐水-空气系统试验装置模拟高压塔降液管中高气含率的两相流,采用毛细管光电检测技术测定了降液管中气含率分布和气泡直径分布,并与水-空气系统非高气含率的分布作了比较。实验结果与按上升气泡速度所预测的气含率相符合。  相似文献   

14.
The local hydrodynamic properties of the gas phase in an internal-loop airlift reactor were investigated in this study. The hydrodynamic properties including gas holdup, bubble velocity and bubble chord length were measured by dual electrical resistivity probes. The chord length distribution was then transformed to the bubble size distribution by modeling the bubbles as ellipsoids. It was found that the gas holdup increased with decreasing bubble velocity. In addition, most bubbles tended to rise along the riser central axis. Thus, the gas holdup in the axis was higher. The bubble size, bubble velocity and gas holdup were relatively constant in the axial direction of the riser except in the zones near the gas sparger and the gas–liquid separator. The bubble velocity became slower when the bubbles approached the gas–liquid separator. Moreover, the bubble size and bubble velocity for the three-phase system were relatively insensitive to the radial direction compared to those for the two-phase system. It was also found in this study that the bubble rise velocity and bubble size for the three-phase system were lower than that for the two-phase system. However, the gas holdup for the three-phase system were higher than that for the two-phase system due to bubble breakage caused by the solid particles.  相似文献   

15.
This paper presents the effect of process variables on gas holdup. It was measured by volume expansion method in a continuously operating flotation column using coal and sphalerite. It was observed that addition of both solids reduced gas holdup. Increase in solid concentration and particle size reduced gas holdup. Also, increase in gas velocity and frother concentration increased the gas holdup as amount of gas increased and bubble surface property favored the formation of small bubbles. An empirical mathematical model was developed to predict gas holdup. The predicted results were in good agreement with the experimental and available published data.  相似文献   

16.
17.
The axial concentration distribution of the hydrophilic and hydrophobic particles, corresponding to poor and good attachment to rising bubbles in water, was investigated in a gas‐liquid‐solid fluidized bed. The sedimentation‐dispersion model depicted satisfactorily the axial distribution of solids holdup by modifying only the terminal settling velocity, which considered the effect of an additional drag force resulting from the attached rising bubbles. This model explained correctly the different phenomena, i.e. solids holdup decreased with increasing the axial height in the non‐attached system, but increased in the attached system.  相似文献   

18.
计算流体力学与群体平衡模型(CFD-PBM)结合可有效地模拟鼓泡塔内流体行为,较准确地预测流场、相含率以及局部气泡尺寸分布。以直径100 mm、高1.3 m的加温加压鼓泡塔为模拟对象,在系统压力为1 MPa、表观气速为0.08~0.24 m/s、温度为30~160℃条件下系统地考察了空气-水体系的表观气速、温度以及固含率对平均气含率、大小气泡气含率、气泡直径和气泡尺寸分布等参数的影响。结果表明,平均气含率的模拟结果和实验值在10%的误差范围内吻合较好;温度的变化主要影响了塔内气泡的聚并和破碎,并用聚并破碎的机理解释了温度对其流体行为的影响。  相似文献   

19.
20.
A bubble column, subjected to low-frequency vibrations, displays maxima in the gas holdup when operated at certain frequencies. These maxima represent various harmonics created by standing waves. The axial distribution of gas holdup was measured for these harmonics to demonstrate that the gas holdup at the anti-nodes is higher than at the nodes; this phenomena is a manifestation of the primary Bjerknes force acting on the bubbles. The Bjerknes force can be exploited to obtain the optimum increase in the gas holdup for a given set of operating conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号