首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photocatalytic membranes have received increasing attention due to their excellent separation and photodegradation of organic contaminants in wastewater. Herein, we bound Ag-AgBr nanoparticles onto a synthesized polyacrylonitrile-ethanolamine (PAN-ETA) membrane with the aid of a chitosan (CS)-TiO2 layer via vacuum filtration and in-situ partial reduction. The introduction of the CS-TiO2 layer improved surface hydrophilicity and provided attachment sites for the Ag-AgBr nanoparticles. The PAN-ETA/CS-TiO2/Ag-AgBr photocatalytic membranes showed a relatively high water permeation flux (~ 47 L·m–2·h–1·bar–1) and dyes rejection (methyl orange: 88.22%; congo red: 95%; methyl blue: 97.41%; rose bengal: 99.98%). Additionally, the composite membranes exhibited potential long-term stability for dye/salt separation (dye rejection: ~97%; salt rejection: ~6.5%). Moreover, the methylene blue and rhodamine B solutions (20 mL, 10 mg·L−1) were degraded approximately 90.75% and 96.81% in batch mode via the synthesized photocatalytic membranes under visible light irradiation for 30 min. This study provides a feasible method for the combination of polymeric membranes and inorganic catalytic materials.  相似文献   

2.
A vacuum membrane distillation(VMD) process with permeate fractional condensation on membrane downstream has been developed for simultaneous recovery of phosphorus and nitrogen from liquid digestate. The polytetrafluoroethylene(PTFE) membrane flux could reach 6000 g·m~(-2)·h~(-1) with the rejection efficiency of total phosphorus(TP) over 0.99, under the condition of flowrate being 120 L·h~(-1) and temperature being 40°C. Membrane fouling occurred with a film of organics and microorganism deposited on the surface of the membrane. Membrane flux could be reversed after the membrane was rinsed by water. Higher feed temperature and flowrate could improve the membrane flux, while hardly affect the rejection efficiency of total phosphorus. The concentration of TP could reach 1600 mg·L~(-1) after membrane distillation, which is about 5 times of that in initial liquid digestate. On the downstream of the membrane, some of the permeate vapor was condensed under the vacuum condition and most of water was collected here. The remaining vapor enriched with total nitrogen(TN) was compressed and pumped to the atmospheric condition to condense. The TN concentration in atmospheric condensate was as high as 7000 mg·L~(-1) with the process separation factor for ammonia being enhanced to 114.  相似文献   

3.
Most commercial NF membranes are negatively charged at the pH range of a typical feed solution. In order to enhance the removal of cations (such as Mg2+ or Ca2+), we utilized polyethyleneimine (PEI) and trimesoyl chloride (TMC) to perform interfacial polymerization reaction on a polydopamine coated hydrolyzed polyacrylonitrile substrate to obtain a positively charged nanofiltration membrane. Effects of polydopamine coating time, PEI concentration, TMC reaction time and concentration on the membrane physicochemical properties and separation performance were systematically investigated using scanning electron microscopy, streaming potential and water contact angle measurements. The optimal NF membrane showed high rejection for divalent ions (93.6±2.6% for MgSO4, 92.4±1.3% for MgCl2, and 90.4±2.1% for Na2SO4), accompanied with NaCl rejection of 27.8±2.5% with a permeation flux of 17.2±2.8 L·m2·h1 at an applied pressure of 8 bar (salt concentrations were all 1000 mg·L1). The synthesized membranes showed promising potentials for the applications of water softening.  相似文献   

4.
In this study,a quantitative performance of three commercial polyamide nanofiltration(NF) membranes(i.e.,NF,NF90,and NF270) for phosphorus removal under different feed conditions was investigated.The experiments were conducted at different feed phosphorus concentrations(2.5,5,10,and 15 mg·L~(-1)) and elevated pHs(pH 1.5,5,10,and 13.5) at a constant feed pressure of 1 MPa using a dead-end filtration cell.Membrane rejection against total phosphorus generally increased with increasing phosphorus concentration regardless of membrane type.In contrast,the permeate flux for all the membranes only decreased slightly with increasing phosphorus concentration.The results also showed that the phosphorus rejections improved while water flux remained almost unchanged with increasing feed solution pH.When the three membranes were exposed to strong pHs(pH 1.5 and 13.5) for a longer duration(up to 6 weeks)it was found that the rejection capability and water flux of the membranes remained very similar throughout the duration,except for NF membrane with marginal decrement in phosphorus rejection.Adsorption study also revealed that more phosphorus was adsorbed onto the membrane structure at alkaline conditions(pH 10 and 13.5) compared to the same membranes tested at lower pHs(pH 1.5 and 5).In eonelusion,NF270 membrane outperformed Nf and NF90 membranes owing to its desirable performance of water flux and phosphorus rejection particularly under strong alkali solution.The NF270 membrane achieved 14.0 L·m~(-2)·h~(-1) and 96.5% rejection against 10 mg·L~(-1) phosphorus solution with a pH value of 13.5 at the applied pressure of 1 MPa.  相似文献   

5.
The novel thermal stable composite nanofiltration membranes were prepared through the interfacial polymerization of piperazine and trimesoyl chloride on the poly (phthalazinone ether) ultrafiltration substrate. The effects of polymerization and testing conditions on membrane performance were studied. The surface morphologies of the substrate and the composite membranes were observed by means of scanning electron microscopy (SEM) and atomic force microscopy (AFM). The separation properties of membranes for dyes and salts were tested. The composite membranes show good thermal stability. The rejection for Na2SO4 was kept over 96%, while the flux reached 400 L·m-2·h-1 when it was tested at 1.0 MPa and 80°C. When tested at 1.0 MPa and 60°C, the rejection of the composite membrane for dyes was kept at high level, and the flux reached 180–210 Lm-2·h-1, while the rejection for NaCl was lower than 20%.  相似文献   

6.
Porous polyvinylidene fluoride-co-hexafluropropylene (PVDF-HFP) hollow fiber membranes were fabricated through a wet spinning process. In order to improve the membrane structure, composition of the polymer solution was adjusted by studying ternary phase diagrams of polymer/solvent/non-solvent. The prepared membranes were used for sweeping gas membrane distillation (SGMD) of 20 wt% ethylene glycol (EG) aqueous solution. The membranes were characterized by different tests such as N2 permeation, overall porosity, critical water entry pressure (CEPw), water contact angle and collapsing pressure. From FESEM examination, addition of 3 wt% glycerol in the PVDF-HFP solution, produced membranes with smaller finger-likes cavities, higher surface porosity and smaller pore sizes. Increasing the polymer concentration up to 21 wt% resulted in a dense spongy structure which could significantly reduce the N2 permeance. The membrane prepared by 3 wt% glycerol and 17 wt% polymer demonstrated an improved structure with mean pore size of 18 nm and a high surface porosity of 872 m-1. CEPw of 350 kPa and overall porosity of 84% were also obtained for the improved membrane. Collapsing pressure of the membranes relatively improved by increasing the polymer concentration. From the SGMD test, the developed membrane represented a maximum permeate flux of 28 kg·m-2·h-1 which is almost 19% higher than the flux of plain membrane. During 120 h of a long-term SGMD operation, a gradual flux reduction of 30% was noticed. In addition, EG rejection reduced from 100% to around 99.5% during 120 h of the operation.  相似文献   

7.
A non-solvent induced phase separation (NIPS) process was used to fabricate a series of sulfonated polyethersulfone (SPES) membranes blending with different concentrations of SBA-15-g-PSPA with the applications in the ultrafiltration (UF) process. SBA-15 was modified with 3-methacrylate-propyltrimethoxysilane (MPS) to form SBA-15-g-MPS. It was further modified with the charge tailorable polymer chains by reacting with 3-sulfopropyl methacrylate potassium salt. The nanoparticles were uniformly dispersed and finger-like channels were developed within the membrane. The adding of surface modified SBA-15-g-PSPA nanoparticles has significantly improved membrane water permeability, hydrophilicity, and antifouling properties. The pure water fluxes of the composite SPES membranes were significantly higher than the pristine SPES membrane. For the membrane containing 5% (mass) of SBA-15-g-PSPA (MSSPA5), the pure water flux was increased dramatically to 402.15 L·m-2·h-1, which is ~1.5 times that of MSSPA0 (268.0 L·m-2·h-1). The high flux rate was achieved with 3% (mass) of SBA-15 nanoparticles with retained high rejection ratio 98% for natural organic matter. The results indicate that the fashioned composite membrane comprising SBA-15-g-PSPA nanoparticles have a promising future in ultrafiltration applications.  相似文献   

8.
Pervaporation desalination has a unique advantage to recycle concentrated salt solutions. The merit can be applied to treat alkaline wastewater if the membrane has superior alkali-resistance. In this paper, we used polyethylene microfiltration membrane as the substrate and deposited a glutaraldehyde crosslinked sodium carboxymethylcellulose layer by spray-coating. Pervaporation flux of the composite membrane reached 35 ± 2 kg·m–2·h–1 with a sodium chloride rejection of 99.9% ± 0.1% when separating a 3.5 wt-% sodium chloride solution at 70 °C. The desalination performance was stable after soaking the membrane in a 20 wt-% NaOH solution at room temperature for 9 d and in a 10 wt-% NaOH solution at 60 °C for 80 h. Moreover, the membrane was stable in 4 wt-% sulfuric acid and a 500 mg·L−1 sodium hypochlorite solution. In a process of concentrating a NaOH solution from 5 to 10 wt-% at 60 °C, an average water flux of 23 kg·m–2·h–1 with a NaOH rejection over 99.98% was obtained.  相似文献   

9.
Pervaporation (PV) is an emerging separation technique for liquid mixture. Mixed matrix membranes (MMMs) often demonstrate trade-off relationship between separation factor and flux. In this study, by changing the organic linkers (2-methyl imidazolate, imidazole-2-carboxaldehyde, 2-ethyl imidazolate), ZIF-8, ZIF-90 and MAF-6 were prepared and filled in polydimethylsiloxane (PDMS) membranes for dealcoholization of 5% (mass) n-butanol solution, and the membranes properties and pervaporation performances were adjusted. Compared with the pure PDMS membrane, the addition of ZIF-8 resulted in a 9% increase in flux (1136 g·m-2·h-1) and a 22.5% increase in separation factor (28.3), displaying anti-trade-off effect. For the MAF-6/PDMS MMMs (2.0% mass loading), the pervaporation separation index (PSI) and separation factor were 32347 g·m-2·h-1 and 58.6 respectively (increased by 34% and 154% in contrast with that of the pure PDMS membrane), and the corresponding permeation flux was 552 g·m-2·h-1, presenting great potential in the removal butanol from water. It was deduced that the large aperture size combined with moderate hydrophobicity of metal-organic frameworks (MOFs) favor the concurrent increase in permeability and selectivity.  相似文献   

10.
冉瑾  黄强  艾新宇  吴玉莹  张朋朋  窦焰 《化工学报》2021,72(4):2148-2155
尽管最近兴起的二维膜材料相较于传统的聚合物基膜材料呈现出明显提升的分离性能。但是二维膜中分子传质需要经过层层堆积的二维通道,传输路径较长,限制了二维膜渗透通量的进一步提升。提出用一维金属有机框架纳米线来调控二维膜实现通量提升,同时不降低分离能力。该策略的实现是通过Zn-BTC纳米线插层MoS2层级膜,制备了Zn-BTC/MoS2复合膜。该复合膜的有机溶剂通量比MoS2二维膜提高了2~6倍,丙酮渗透通量高达3562 L·m-2·h-1·bar-1。同时该复合膜保持了与MoS2膜同等优异的筛分能力,对于尺寸大于0.42 nm的染料分子,可以实现100%截留。  相似文献   

11.
由于芳香族聚酰胺反渗透膜在抗污染性以及耐氯性方面存在不足,限制了其在海水淡化等方面的应用。采用往油相中添加氧化石墨烯(GO)的二次界面聚合法改性了商业反渗透膜,评价了GO掺杂反渗透混合基质膜的分离性能和耐氯性能,并用接触角仪、Zeta电位仪、扫描电镜和原子力显微镜等仪器表征了膜的亲水性能、荷电性能以及膜表面形貌。结果表明,GO的添加提高了膜的分离性能、耐氯性能和亲水性能;当GO添加量为30 mg·L-1时,膜的通量为(77.7±0.9) L·m-2·h-1,膜的截留率为97.6%±0.5%,相比商业膜分别提高了38.4%和4.5%。当氯化强度低于4800 mg·L-1·h时,膜的水通量和盐截留率变化不明显。  相似文献   

12.
Effective extraction of lithium from high Mg~(2+)/Li+ratio brine lakes is of great challenge. In this work, organic–inorganic hybrid silica nanofiltration(NF) membranes were prepared by dip-coating a 1,2-bis(triethoxysilyl)ethane(BTESE)-derived separation layer on tubular TiO_2 support, for efficient separation of LiC l and MgCl_2 salt solutions. We found that the membrane calcinated at 400 °C(M1–400) could exhibit a narrow pore size distribution(0.63–1.66 nm) owing to the dehydroxylation and the thermal degradation of the organic bridge groups. All as-prepared membranes exhibited higher rejections to LiCl than to MgCl_2, which was attributed to the negative charge of the membrane surfaces. The rejection for LiCl and MgCl_2 followed the order: LiCl N MgCl_2, revealing that Donnan exclusion effect dominated the salt rejection mechanism. In addition, the triplecoated membrane calcined at 400 °C(M3–400) exhibited a permeability of about 9.5 L·m~(-2)·h~(-1)·bar~(-1) for LiCl or MgCl_2 solutions, with rejections of 74.7% and 20.3% to LiCl and MgCl_2,respectively, under the transmembrane pressure at 6 bar. Compared with the previously reported performance of NF membranes for Mg~(2+)/Li+separation, the overall performance of M3–400 is highly competitive. Therefore, this work may provide new insight into designing robust silica-based ceramic NF membranes with negative charge for efficient lithium extraction from salt lakes.  相似文献   

13.
Cellulose acetate butyrate (CAB) membranes gave high salt and urea rejection with a water flux of about 3 gfd (gallons/ft2 · day) during hyperfiltration at 600 psig. Evidence was obtained which indicated that the CAB membranes used in this work were asymmetric. Membrane heat treatment increased urea rejection significantly while salt rejection was invariant, and water flux decreased. An increase in feed solution temperature caused a significant increase in water flux and a small decrease in urea and salt rejection. Increasing the pressure increased water flux and urea and salt rejection. During a 400-hr life test, the water flux decreased by about 25% while urea rejection increased and salt rejection was invariant. The influence of pressure, membrane heat treatment, and compaction during CAB membranes life testing on urea and salt rejection provided evidence that these two solutes were rejected by somewhat different mechanisms. Salt rejection was consistent with a solution–diffusion mechanism for membrane transport and uncoupled flow while changes in urea rejection with pressure, membrane heat treatment, and compaction during life testing suggested that urea was at least partially rejected by membrane exclusion resulting from geometric factors.  相似文献   

14.
聚电解质静电沉积改性制备高性能反渗透膜   总被引:1,自引:1,他引:0       下载免费PDF全文
刘美玲  刘军  王琴  谈勇  李保安 《化工学报》2018,69(2):830-839
利用次氯酸钠溶液对商品反渗透膜表面进行氯化处理,然后将聚阳离子电解质壳聚糖通过静电吸附作用沉积在RO膜的表面,系统地研究了氯化过程的pH、氯化时间、次氯酸钠浓度、壳聚糖浓度及其沉积时间对膜性能的影响,以制备出高通量、高截留率的RO膜。在压力1.55 MPa、原料液温度(298±1)K的条件下,测定RO膜处理2000 μg·g-1氯化钠溶液的水通量和截留率。结果表明,当pH=9、氯化时间为30 min、次氯酸钠浓度为1000 mg·L-1时,水通量较原膜提高了约19.89%,截留率略有提高;当壳聚糖浓度为0.1%(质量分数)、沉积时间为30 min时,改性膜的接触角降低到34.88°,亲水性提高,水通量较氯化后的RO膜几乎保持不变,为60.55 L·m-2·h-1,截留率达到了99.56%。经过氯化和沉积改性后的RO膜水通量和截留率均得到了提高。  相似文献   

15.
In this study, the semi-aromatic polyamide membranes were synthesized by the interfacial polymerization between piperazine (PIP) monomers in the water phase and Benzene-1,3,5-tricarbonyl chloride in the organic phase. To further modify the semi-aromatic pervaporation membrane, the two amino acids, glycine, and l -lysine, were mixed with PIP monomers for interfacial polymerization. The morphology and physicochemical properties of the synthesized membranes were analyzed using Fourier transform infrared (FTIR), field emission scanning electron microscope (FE-SEM), atomic force microscope (AFM), and contact angle measurements. The results show that the semi-aromatic polyamide membranes modified by the two amino acids possess a higher hydrophilic surface and lower thickness compared to the unmodified membrane. Additionally, the permeation flux of the semi-aromatic polyamide membranes was improved by 18.6% and 38.5% as modified with glycine and l -lysine, respectively, at the operating temperature of 70°C when the rejection of both NaCl and arsenic are higher than 99.8%. Furthermore, the operating temperature significantly influenced the permeation flux, while the salt rejections were insignificantly affected. The permeation flux increases by 3.2- and 4.0-folds for glycine and lysine-modified membranes, respectively, when elevating the feed temperature from 40°C to 70°C. The highest permeation flux of 29.5 kg m−2 h−1 with a 5 wt% NaCl rejection of 99.8% was obtained at 70°C by using 0.3 wt% l -lysine modified polyamide (PA) membrane. For elimination of 1.5 mg L−1 As solution at the feed temperature of 70°C, such l -lysine modified PA membrane exhibited the permeation flux of 30.5 kg m−2 h−1 and As rejection of 99.6%, respectively. This work provides a cost-saving, facile, and eco-friendly preparation method for effectively improving the permeation flux while not sacrificing the high rejection of salts of the modified membranes.  相似文献   

16.
The discharge of industrial effluent containing heavy metal ions would cause water pollution if such effluent is not properly treated. In this work, the performance of emerging nanofiltration(NF) like-forward osmosis(FO)membrane was evaluated for its efficiency to remove copper ion from water. Conventionally, copper ion is removed from aqueous solution via adsorption and/or ion-exchange method. The engineered osmosis method as proposed in this work considered four commercial NF membranes(i.e., NF90, DK, NDX and PFO) where their separation performances were accessed using synthetic water sample containing 100 mg·L~(-1) copper ion under FO and pressure retarded osmosis(PRO) orientation. The findings indicated that all membranes could achieve almost complete removal of copper regardless of membrane orientation without applying external driving force.The high removal rates were in good agreement with the outcomes of the membranes tested under pressuredriven mode at 1 MPa. The use of appropriate salts as draw solutes enabled the NF membranes to be employed in engineered osmosis process, achieving a relatively low reverse solute flux. The findings showed that the best performing membrane is PFO membrane in which it achieved N 99.4% copper rejection with very minimum reverse solute flux of 1 g·m~(-2)·h~(-1).  相似文献   

17.
Though membrane distillation (MD) has gained more and more attention in the field of desalination, the wetting phenomenon was still a non-negligible problem. In this work, a method combined dip-coating and UV in situ polymerization for preparing hydrophobic/hydrophilic perfluoropolyether (PFPE)/polyvinylidene fluoride composite membranes. This composite membrane consisted of a top thin hydrophobic coating layer and hydrophilic substrate membrane. In terms of anti-wetting properties, contact angle and liquid entry pressure of all composite membranes (except for those based on 0.45 μm) exceeded 160° and 0.3 MPa, respectively. In particular, the desalination performance was tested in vacuum membrane distillation tests by feeding 3.5% (mass) saline solution (NaCl) at 60 ℃. The composite membranes with larger support pore size and lower PFPE content had higher membrane distillation flux. And for stability tests (testing the 0.22 μm membrane coated by 5% (mass) PFPE), the highest MD flux 29.08 kg·m-2·h-1 and stable salt rejection (over 99.99%) during the period. Except that, the effects of coating material concentration and pore sizes of substrate membrane were also investigated for surface morphology and topography, porosity, mechanical strength and pore size characteristics. This work provided a simple and effective alternative to prepare excellent hydrophobic composite membranes for MD applications.  相似文献   

18.
徐颜军  徐泽海  孟琴  沈冲  侯蕊  张国亮 《化工学报》2019,70(9):3565-3572
高性能石墨烯基复合膜的制备是目前国际研究热点,但是石墨烯基纳滤膜在脱盐中水通量较低,限制其在脱盐中的应用。采用聚多巴胺(PDA)改性聚砜(PSF)膜为基膜,将还原氧化石墨烯(rGO)和超薄氮化碳(uCN)纳米片通过真空抽滤法在基膜表面自组装制备新型还原氧化石墨烯/氮化碳复合纳滤膜。通过场发射扫描电子显微镜、透射电子显微镜、X 射线衍射仪、傅里叶变换红外光谱仪和X射线光电子能谱仪等研究uCN添加对膜结构和形貌的影响,并考察不同uCN添加比例、rGO用量及压力复合纳滤膜性能变化规律。结果显示当在100 mg·L-1的rGO中添加uCN为20 mg·L-1时所制备的rGO/uCN复合纳滤膜不仅保持良好盐离子截留率(对Na2SO4截留率85.86%,对NaCl截留率30.17%),且水渗透系数是rGO膜的2.15倍(88.50 L·m-2·h-1·MPa-1)。  相似文献   

19.
Enhancing the water permeation while maintaining high salt rejection of existing reverse osmosis (RO) membranes remains a considerable challenge. Herein, we proposed to introduce polymer of intrinsic microporosity, PIM-1, into the selective layer of reverse osmosis membranes to break the trade-off effect between permeability and selectivity. A water-soluble a-LPIM-1 of low-molecular-weight and hydroxyl terminals was synthesized. These designed characteristics endowed it with high solubility and reactivity. Then it was mixed with m-phenylenediamine and together served as aqueous monomer to react with organic monomer of trimesoyl chloride via interfacial polymerization. The characterization results exhibited that more “nodule” rather than “leaf” structure formed on RO membrane surface, which indicated that the introduction of the high free-volume of a-LPIM-1 with three dimensional twisted and folded structure into the selective layer effectively caused the frustrated packing between polymer chains. In virtue of this effect, even with reduced surface roughness and unchanged layer thickness, the water permeability of prepared reverse osmosis membranes increased 2.1 times to 62.8 L·m-2·h-1 with acceptable NaCl rejection of 97.6%. This attempt developed a new strategy to break the trade-off effect faced by traditional polyamide reverse osmosis membranes.  相似文献   

20.
以聚醚砜(PES)超滤膜为基膜,通过聚多巴胺(PDA)表面改性后压力沉积不同量的二氧化钛(TiO2)纳米粒子作为基底,再沉积氧化石墨烯(GO)片层制得TiO2/GO复合分离膜,重点考察基膜表面形貌对GO膜分离性能的影响。通过扫描电子显微镜、接触角测试仪、固体表面Zeta电位分析仪、X射线衍射分析仪等对有无TiO2沉积层的GO复合膜进行表征,并考察TiO2沉积量对GO复合膜分离性能的影响。结果表明,TiO2纳米粒子以团簇状态均匀分布在改性的超滤膜表面,随TiO2沉积量的增加,团簇密度增大,GO沉积后表层的峰谷结构更为明显,但表层的层间距并无明显改变。TiO2/GO复合膜的水通量随TiO2沉积量的增加而明显增大,TiO2的沉积对GO沉积量低的复合膜通量的影响更明显,当 GO沉积量为4.11 μg/cm2,TiO2沉积量为20.55 μg/cm2时,复合膜的水通量较无TiO2的复合膜提高了108.38%。复合膜对无机盐溶液的截留性能主要基于膜表面所带负电的道南排斥作用,TiO2/GO复合膜对刚果红的截留率在99%以上,对甲基橙的截留率可达82%,TiO2层的加入并未降低复合膜的截留效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号